Complex Cobordism and Stable Homotopy Groups of Spheres

Complex Cobordism and Stable Homotopy Groups of Spheres
Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
Total Pages: 418
Release: 2003-11-25
Genre: Mathematics
ISBN: 082182967X

Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Homotopy Theory via Algebraic Geometry and Group Representations

Homotopy Theory via Algebraic Geometry and Group Representations
Author: Mark E. Mahowald
Publisher: American Mathematical Soc.
Total Pages: 394
Release: 1998
Genre: Mathematics
ISBN: 0821808052

The academic year 1996-97 was designated as a special year in Algebraic Topology at Northwestern University (Evanston, IL). In addition to guest lecturers and special courses, an international conference was held entitled "Current trends in algebraic topology with applications to algebraic geometry and physics". The series of plenary lectures included in this volume indicate the great breadth of the conference and the lively interaction that took place among various areas of mathematics. Original research papers were submitted, and all submissions were refereed to the usual journal standards.

Algebraic Topology: Oaxtepec 1991

Algebraic Topology: Oaxtepec 1991
Author: Martin C. Tangora
Publisher: American Mathematical Soc.
Total Pages: 504
Release: 1993
Genre: Mathematics
ISBN: 0821851624

This book consists of twenty-nine articles contributed by participants of the International Conference in Algebraic Topology held in July 1991 in Mexico. In addition to papers on current research, there are several surveys and expositions on the work of Mark Mahowald, whose sixtieth birthday was celebrated during the conference. The conference was truly international, with over 130 mathematicians from fifteen countries. It ended with a spectacular total eclipse of the sun, a photograph of which appears as the frontispiece. The papers range over much of algebraic topology and cross over into related areas, such as K theory, representation theory, and Lie groups. Also included is a chart of the Adams spectral sequence and a bibliography of Mahowald's publications.

Braids

Braids
Author: Joan S. Birman
Publisher: American Mathematical Soc.
Total Pages: 766
Release: 1988
Genre: Mathematics
ISBN: 0821850881

Contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Artin's Braid Group, held at the University of California, Santa Cruz, in July 1986. This work is suitable for graduate students and researchers who wish to learn more about braids, as well as more experienced workers in this area.

Nilpotence and Periodicity in Stable Homotopy Theory

Nilpotence and Periodicity in Stable Homotopy Theory
Author: Douglas C. Ravenel
Publisher: Princeton University Press
Total Pages: 228
Release: 1992-11-08
Genre: Mathematics
ISBN: 9780691025728

Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

Algebraic Topology and Algebraic K-Theory (AM-113), Volume 113

Algebraic Topology and Algebraic K-Theory (AM-113), Volume 113
Author: William Browder
Publisher: Princeton University Press
Total Pages: 577
Release: 2016-03-02
Genre: Mathematics
ISBN: 1400882117

This book contains accounts of talks held at a symposium in honor of John C. Moore in October 1983 at Princeton University, The work includes papers in classical homotopy theory, homological algebra, rational homotopy theory, algebraic K-theory of spaces, and other subjects.

Homotopy Invariant Algebraic Structures

Homotopy Invariant Algebraic Structures
Author: Jean-Pierre Meyer
Publisher: American Mathematical Soc.
Total Pages: 392
Release: 1999
Genre: Mathematics
ISBN: 082181057X

This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history of the subject. But the bulk of the volume consists of research papers on topics that have been strongly influenced by Boardman's work. Articles give readers a vivid sense of the current state of the theory of "homotopy-invariant algebraic structures". Also included are two major foundational papers by Goerss and Strickland on applications of methods of algebra (i.e., Dieudonné modules and formal schemes) to problems of topology. Boardman is known for the depth and wit of his ideas. This volume is intended to reflect and to celebrate those fine characteristics.

Algebraic Topology

Algebraic Topology
Author: Gunnar Carlsson
Publisher: Springer
Total Pages: 469
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540461604

These are proceedings of an International Conference on Algebraic Topology, held 28 July through 1 August, 1986, at Arcata, California. The conference served in part to mark the 25th anniversary of the journal Topology and 60th birthday of Edgar H. Brown. It preceded ICM 86 in Berkeley, and was conceived as a successor to the Aarhus conferences of 1978 and 1982. Some thirty papers are included in this volume, mostly at a research level. Subjects include cyclic homology, H-spaces, transformation groups, real and rational homotopy theory, acyclic manifolds, the homotopy theory of classifying spaces, instantons and loop spaces, and complex bordism.