Obstruction Theory

Obstruction Theory
Author: H. J. Baues
Publisher: Springer
Total Pages: 398
Release: 2006-11-15
Genre: Mathematics
ISBN: 3540359796

Lagrangian Intersection Floer Theory

Lagrangian Intersection Floer Theory
Author: Kenji Fukaya
Publisher: American Mathematical Soc.
Total Pages: 426
Release: 2010-06-21
Genre: Mathematics
ISBN: 0821852507

This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.

Algebraic Topology

Algebraic Topology
Author: Edwin H. Spanier
Publisher: Springer Science & Business Media
Total Pages: 502
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468493221

This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.

Introduction to Homotopy Theory

Introduction to Homotopy Theory
Author: Martin Arkowitz
Publisher: Springer Science & Business Media
Total Pages: 352
Release: 2011-07-25
Genre: Mathematics
ISBN: 144197329X

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Handbook of Topological Fixed Point Theory

Handbook of Topological Fixed Point Theory
Author: Robert F. Brown
Publisher: Springer Science & Business Media
Total Pages: 966
Release: 2005-12-05
Genre: Mathematics
ISBN: 1402032226

This book is the first in the world literature presenting all new trends in topological fixed point theory. Until now all books connected to the topological fixed point theory were devoted only to some parts of this theory. This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.

Facets of Algebraic Geometry

Facets of Algebraic Geometry
Author: Paolo Aluffi
Publisher: Cambridge University Press
Total Pages: 417
Release: 2022-04-07
Genre: Mathematics
ISBN: 1108792502

Written to honor the enduring influence of William Fulton, these articles present substantial contributions to algebraic geometry.

Diagram Cohomology and Isovariant Homotopy Theory

Diagram Cohomology and Isovariant Homotopy Theory
Author: Giora Dula
Publisher: American Mathematical Soc.
Total Pages: 97
Release: 1994
Genre: Mathematics
ISBN: 0821825895

Obstruction theoretic methods are introduced into isovariant homotopy theory for a class of spaces with group actions; the latter includes all smooth actions of cyclic groups of prime power order. The central technical result is an equivalence between isovariant homotopy and specific equivariant homotopy theories for diagrams under suitable conditions. This leads to isovariant Whitehead theorems, an obstruction-theoretic approach to isovariant homotopy theory with obstructions in cohomology groups of ordinary and equivalent diagrams, and qualitative computations for rational homotopy groups of certain spaces of isovariant self maps of linear spheres. The computations show that these homotopy groups are often far more complicated than the rational homotopy groups for the corresponding spaces of equivariant self maps. Subsequent work will use these computations to construct new families of smooth actions on spheres that are topologically linear but differentiably nonlinear.

Donaldson Type Invariants for Algebraic Surfaces

Donaldson Type Invariants for Algebraic Surfaces
Author: Takuro Mochizuki
Publisher: Springer
Total Pages: 404
Release: 2009-04-20
Genre: Mathematics
ISBN: 354093913X

In this monograph, we de?ne and investigate an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface. We may expect the existence of interesting “universal relations among invariants”, which would be a natural generalization of the “wall-crossing formula” and the “Witten conjecture” for classical Donaldson invariants. Our goal is to obtain a weaker version of such relations, in other brief words, to describe a relation as the sum of integrals over the products of m- uli spaces of objects with lower ranks. Fortunately, according to a recent excellent work of L. Gottsche, ̈ H. Nakajima and K. Yoshioka, [53], a wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case. We hope that our work in this monograph would, at least tentatively, provides a part of foundation for the further study on such universal relations. In the rest of this preface, we would like to explain our motivation and some of important ingredients of this study. See Introduction for our actual problems and results. Donaldson Invariants Let us brie?y recall Donaldson invariants. We refer to [22] for more details and precise. We also refer to [37], [39], [51] and [53]. LetX be a compact simply con- ? nected oriented real 4-dimensional C -manifold with a Riemannian metric g. Let P be a principalSO(3)-bundle on X.

Algebraic K-theory And Its Applications - Proceedings Of The School

Algebraic K-theory And Its Applications - Proceedings Of The School
Author: Hyman Bass
Publisher: World Scientific
Total Pages: 622
Release: 1999-03-12
Genre:
ISBN: 9814544795

The Proceedings volume is divided into two parts. The first part consists of lectures given during the first two weeks devoted to a workshop featuring state-of-the-art expositions on 'Overview of Algebraic K-theory' including various constructions, examples, and illustrations from algebra, number theory, algebraic topology, and algebraic/differential geometry; as well as on more concentrated topics involving connections of K-theory with Galois, etale, cyclic, and motivic (co)homologies; values of zeta functions, and Arithmetics of Chow groups and zero cycles. The second part consists of research papers arising from the symposium lectures in the third week.