Numpy Essentials
Download Numpy Essentials full books in PDF, epub, and Kindle. Read online free Numpy Essentials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Leo (Liang-Huan) Chin |
Publisher | : Packt Publishing Ltd |
Total Pages | : 148 |
Release | : 2016-04-28 |
Genre | : Computers |
ISBN | : 1784392189 |
Boost your scientific and analytic capabilities in no time at all by discovering how to build real-world applications with NumPy About This Book Optimize your Python scripts with powerful NumPy modules Explore the vast opportunities to build outstanding scientific/ analytical modules by yourself Packed with rich examples to help you master NumPy arrays and universal functions Who This Book Is For If you are an experienced Python developer who intends to drive your numerical and scientific applications with NumPy, this book is for you. Prior experience or knowledge of working with the Python language is required. What You Will Learn Manipulate the key attributes and universal functions of NumPy Utilize matrix and mathematical computation using linear algebra modules Implement regression and curve fitting for models Perform time frequency / spectral density analysis using the Fourier Transform modules Collate with the distutils and setuptools modules used by other Python libraries Establish Cython with NumPy arrays Write extension modules for NumPy code using the C API Build sophisticated data structures using NumPy array with libraries such as Panda and Scikits In Detail In today's world of science and technology, it's all about speed and flexibility. When it comes to scientific computing, NumPy tops the list. NumPy gives you both the speed and high productivity you need. This book will walk you through NumPy using clear, step-by-step examples and just the right amount of theory. We will guide you through wider applications of NumPy in scientific computing and will then focus on the fundamentals of NumPy, including array objects, functions, and matrices, each of them explained with practical examples. You will then learn about different NumPy modules while performing mathematical operations such as calculating the Fourier Transform; solving linear systems of equations, interpolation, extrapolation, regression, and curve fitting; and evaluating integrals and derivatives. We will also introduce you to using Cython with NumPy arrays and writing extension modules for NumPy code using the C API. This book will give you exposure to the vast NumPy library and help you build efficient, high-speed programs using a wide range of mathematical features. Style and approach This quick guide will help you get to grips with the nitty-gritties of NumPy using with practical programming examples. Each topic is explained in both theoretical and practical ways with hands-on examples providing you efficient way of learning and adequate knowledge to support your professional work.
Author | : Jake VanderPlas |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 609 |
Release | : 2016-11-21 |
Genre | : Computers |
ISBN | : 1491912138 |
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Author | : Travis Oliphant |
Publisher | : CreateSpace |
Total Pages | : 364 |
Release | : 2015-09-15 |
Genre | : |
ISBN | : 9781517300074 |
This is the second edition of Travis Oliphant's A Guide to NumPy originally published electronically in 2006. It is designed to be a reference that can be used by practitioners who are familiar with Python but want to learn more about NumPy and related tools. In this updated edition, new perspectives are shared as well as descriptions of new distributed processing tools in the ecosystem, and how Numba can be used to compile code using NumPy arrays. Travis Oliphant is the co-founder and CEO of Continuum Analytics. Continuum Analytics develops Anaconda, the leading modern open source analytics platform powered by Python. Travis, who is a passionate advocate of open source technology, has a Ph.D. from Mayo Clinic and B.S. and M.S. degrees in Mathematics and Electrical Engineering from Brigham Young University. Since 1997, he has worked extensively with Python for computational and data science. He was the primary creator of the NumPy package and founding contributor to the SciPy package. He was also a co-founder and past board member of NumFOCUS, a non-profit for reproducible and accessible science that supports the PyData stack. He also served on the board of the Python Software Foundation.
Author | : Eli Bressert |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 68 |
Release | : 2012 |
Genre | : Computers |
ISBN | : 1449305466 |
"Optimizing and boosting your Python programming"--Cover.
Author | : Ivan Idris |
Publisher | : Packt Publishing Ltd |
Total Pages | : 623 |
Release | : 2013-04-25 |
Genre | : Computers |
ISBN | : 1782166092 |
The book is written in beginner’s guide style with each aspect of NumPy demonstrated with real world examples and required screenshots.If you are a programmer, scientist, or engineer who has basic Python knowledge and would like to be able to do numerical computations with Python, this book is for you. No prior knowledge of NumPy is required.
Author | : Alberto Boschetti |
Publisher | : Packt Publishing Ltd |
Total Pages | : 466 |
Release | : 2018-09-28 |
Genre | : Computers |
ISBN | : 1789531896 |
Gain useful insights from your data using popular data science tools Key FeaturesA one-stop guide to Python libraries such as pandas and NumPyComprehensive coverage of data science operations such as data cleaning and data manipulationChoose scalable learning algorithms for your data science tasksBook Description Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users What you will learnSet up your data science toolbox on Windows, Mac, and LinuxUse the core machine learning methods offered by the scikit-learn libraryManipulate, fix, and explore data to solve data science problemsLearn advanced explorative and manipulative techniques to solve data operationsOptimize your machine learning models for optimized performanceExplore and cluster graphs, taking advantage of interconnections and links in your dataWho this book is for If you’re a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.
Author | : Wes McKinney |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 553 |
Release | : 2017-09-25 |
Genre | : Computers |
ISBN | : 1491957611 |
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Author | : Kallur Rahman |
Publisher | : BPB Publications |
Total Pages | : 319 |
Release | : 2021-07-30 |
Genre | : Computers |
ISBN | : 9391030076 |
Build your data science skills. Start data visualization Using Python. Right away. Become a good data analyst by creating quality data visualizations using Python. KEY FEATURES ● Exciting coverage on loads of Python libraries, including Matplotlib, Seaborn, Pandas, and Plotly. ● Tons of examples, illustrations, and use-cases to demonstrate visual storytelling of varied datasets. ● Covers a strong fundamental understanding of exploratory data analysis (EDA), statistical modeling, and data mining. DESCRIPTION Data visualization plays a major role in solving data science challenges with various capabilities it offers. This book aims to equip you with a sound knowledge of Python in conjunction with the concepts you need to master to succeed as a data visualization expert. The book starts with a brief introduction to the world of data visualization and talks about why it is important, the history of visualization, and the capabilities it offers. You will learn how to do simple Python-based visualization with examples with progressive complexity of key features. The book starts with Matplotlib and explores the power of data visualization with over 50 examples. It then explores the power of data visualization using one of the popular exploratory data analysis-oriented libraries, Pandas. The book talks about statistically inclined data visualization libraries such as Seaborn. The book also teaches how we can leverage bokeh and Plotly for interactive data visualization. Each chapter is enriched and loaded with 30+ examples that will guide you in learning everything about data visualization and storytelling of mixed datasets. WHAT YOU WILL LEARN ● Learn to work with popular Python libraries and frameworks, including Seaborn, Bokeh, and Plotly. ● Practice your data visualization understanding across numerous datasets and real examples. ● Learn to visualize geospatial and time-series datasets. ● Perform correlation and EDA analysis using Pandas and Matplotlib. ● Get to know storytelling of complex and unstructured data using Bokeh and Pandas. ● Learn best practices in writing clean and short python scripts for a quicker visual summary of datasets. WHO THIS BOOK IS FOR This book is for all data analytics professionals, data scientists, and data mining hobbyists who want to be strong data visualizers by learning all the popular Python data visualization libraries. Prior working knowledge of Python is assumed. TABLE OF CONTENTS 1. Introduction to Data Visualization 2. Why Data Visualization 3. Various Data Visualization Elements and Tools 4. Using Matplotlib with Python 5. Using NumPy and Pandas for Plotting 6. Using Seaborn for Visualization 7. Using Bokeh with Python 8. Using Plotly, Folium, and Other Tools for Data Visualization 9. Hands-on Examples and Exercises, Case Studies, and Further Resources
Author | : Sebastian Klaas |
Publisher | : BPB Publications |
Total Pages | : 300 |
Release | : 2021-08-24 |
Genre | : Computers |
ISBN | : 9389423716 |
KEY FEATURES ● Understand applications like reinforcement learning, automatic driving and image generation. ● Understand neural networks accompanied with figures and charts. ● Learn about determining coefficients and initial values of weights. DESCRIPTION Deep learning helps you solve issues related to data problems as it has a vast array of mathematical algorithms and has capacity to detect patterns. This book starts with a quick view of deep learning in Python which would include definition, features and applications. You would be learning about perceptron, neural networks, Backpropagation. This book would also give you a clear insight of how to use Numpy and Matplotlin in deep learning models. By the end of the book, you’ll have the knowledge to apply the relevant technologies in deep learning. WHAT YOU WILL LEARN ● To develop deep learning applications, use Python with few outside inputs. ● Study several ideas of profound learning and neural networks ● Learn how to determine coefficients of learning and weight values ● Explore applications such as automation, image generation and reinforcement learning ● Implement trends like batch Normalisation, dropout, and Adam WHO THIS BOOK IS FOR Deep Learning from the Basics is for data scientists, data analysts and developers who wish to build efficient solutions by applying deep learning techniques. Individuals who would want a better grasp of technology and an overview. You should have a workable Python knowledge is a required. NumPy knowledge and pandas will be an advantage, but that’s completely optional. TABLE OF CONTENTS 1. Python Introduction 2. Perceptron in Depth 3. Neural Networks 4. Training Neural Network 5. Backpropagation 6. Neural Network Training Techniques 7. CNN 8. Deep Learning
Author | : Alberto Boschetti |
Publisher | : Packt Publishing Ltd |
Total Pages | : 373 |
Release | : 2016-10-28 |
Genre | : Computers |
ISBN | : 1786462834 |
Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.