Numerical Values of Some Integrals Involving Bessel Functions
Author | : D. L. George |
Publisher | : |
Total Pages | : 58 |
Release | : 1960 |
Genre | : Bessel functions |
ISBN | : |
Download Numerical Values Of Some Integrals Involving Bessel Functions full books in PDF, epub, and Kindle. Read online free Numerical Values Of Some Integrals Involving Bessel Functions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : D. L. George |
Publisher | : |
Total Pages | : 58 |
Release | : 1960 |
Genre | : Bessel functions |
ISBN | : |
Author | : Yudell L. Luke |
Publisher | : Courier Corporation |
Total Pages | : 436 |
Release | : 2014-10-20 |
Genre | : Mathematics |
ISBN | : 0486799395 |
A massive compendium of useful information, this volume represents a valuable tool for applied mathematicians in many areas of academia and industry. A dozen useful tables supplement the text. 1962 edition.
Author | : A. S. Kobayashi |
Publisher | : |
Total Pages | : 714 |
Release | : 1965 |
Genre | : Bessel functions |
ISBN | : |
Author | : Naum I͡Akovlevich Vilenkin |
Publisher | : American Mathematical Soc. |
Total Pages | : 613 |
Release | : 1968 |
Genre | : Mathematics |
ISBN | : 9780821815724 |
A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group $SU(2)$, and the hypergeometric function and representations of the group $SL(2,R)$, as well as many other classes of special functions.
Author | : George N. Watson |
Publisher | : |
Total Pages | : 822 |
Release | : 1922 |
Genre | : Bessel functions |
ISBN | : |
Author | : Tom M. Apostol |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461209994 |
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.
Author | : Matest M. Agrest |
Publisher | : Springer Science & Business Media |
Total Pages | : 343 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 364265021X |
In preparing the English edition of this unique work, every effort has been made to obtain an easily read and lueid exposition of the material. This has frequently been done at the expense of a literal translation of the original text and it is felt that such liberties as have been taken with the author's language are justified in the interest of ease in readingo None of us pretends to be an authority in the Russian language, and we trust that the original intent of the authors has not been lost. The equations, whieh were for the most part taken verbatim from the original work, were eheeked only eursorily; obvious and previously noted errors have been eorreeted. Fortunately, the Russian and English mathematieal notations are generally in good agreement. An exeeption is the shortened abbreviations for the hyperbolie functions (e.g. sh for sinh), and the symbol Jm rather that Im to denote the imaginary part. As near as possible, these diserepaneies have been correeted. In preparing the Bibliography, works having an English equivalent have been translated into the English title, but in the text the referenee to the Russian work was retained, as it was impraetieal to attempt to find in eaeh ease the eorresponding eitation in the English edition. Authors' names and titles associated with purely Russian works have been transliterated as nearly as possible to the English equivalent, along with the equivalent English title of the work cited.
Author | : A.M. Mathai |
Publisher | : Springer Science & Business Media |
Total Pages | : 276 |
Release | : 2009-10-10 |
Genre | : Science |
ISBN | : 1441909168 |
TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.