Numerical Solutions Of Partial Differential Equations Using Finite Difference Method And Mathematica
Download Numerical Solutions Of Partial Differential Equations Using Finite Difference Method And Mathematica full books in PDF, epub, and Kindle. Read online free Numerical Solutions Of Partial Differential Equations Using Finite Difference Method And Mathematica ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J.W. Thomas |
Publisher | : Springer Science & Business Media |
Total Pages | : 451 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1489972781 |
What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.
Author | : SUJAUL CHOWDHURY |
Publisher | : American Academic Press |
Total Pages | : 96 |
Release | : 2019-01-14 |
Genre | : Mathematics |
ISBN | : 1631819933 |
The book is intended for graduate students of Engineering, Mathematics and Physics. We have numerically solved Hyperbolic and Parabolic partial differential equations with various initial conditions using Finite Difference Method and Mathematica. Replacing derivatives by finite difference approximations in these differential equations in conjunction with boundary conditions and initial conditions lead to equations relating numerical solutions at various position and time. These relations are intricate in that numerical value of the solution at one particular position and time is related with that at several other position and time. We have surmounted the intricacies by writing programs in Mathematica 6.0 that neatly provide systematic tabulation of the numerical values for all necessary position and time. This enabled us to plot the solutions as functions of position and time. Comparison with analytic solutions revealed nearly perfect match in every case. We have demonstrated conditions under which the nearly perfect match can be obtained even for larger increments in position or time.
Author | : Victor Grigor'e Ganzha |
Publisher | : CRC Press |
Total Pages | : 364 |
Release | : 1996-07-12 |
Genre | : Mathematics |
ISBN | : 9780849373794 |
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Author | : Stig Larsson |
Publisher | : Springer Science & Business Media |
Total Pages | : 263 |
Release | : 2008-12-05 |
Genre | : Mathematics |
ISBN | : 3540887059 |
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Author | : Stephen Wolfram |
Publisher | : |
Total Pages | : 996 |
Release | : 1991 |
Genre | : |
ISBN | : 9780201515022 |
Author | : Mark S. Gockenbach |
Publisher | : SIAM |
Total Pages | : 665 |
Release | : 2010-12-02 |
Genre | : Mathematics |
ISBN | : 0898719356 |
A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.
Author | : Daniel Dubin |
Publisher | : Wiley-Interscience |
Total Pages | : 664 |
Release | : 2003-05-05 |
Genre | : Science |
ISBN | : |
Written from the perspective of a physicist rather than a mathematician, the text focuses on modern practical applications in the physical engineering sciences, attacking these problems with a range of numerical and analytical methods, both elementary and advanced. Incorporating the widely used and highly praised Mathematica® software package, the author offers solution techniques for the partial differential equations of mathematical physics such as Poisson's equation, the wave equation, and Schrödinger's equation, including Fourier series and transforms, Green's functions, the method of characteristics, grids, Galerkin and simulation methods, elementary probability theory, and statistical methods.
Author | : Claes Johnson |
Publisher | : Courier Corporation |
Total Pages | : 290 |
Release | : 2012-05-23 |
Genre | : Mathematics |
ISBN | : 0486131599 |
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Author | : Prem K. Kythe |
Publisher | : CRC Press |
Total Pages | : 440 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1482296322 |
Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.
Author | : Walter A. Strauss |
Publisher | : John Wiley & Sons |
Total Pages | : 467 |
Release | : 2007-12-21 |
Genre | : Mathematics |
ISBN | : 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.