Numerical Methods For Stiff Equations And Singular Perturbation Problems
Download Numerical Methods For Stiff Equations And Singular Perturbation Problems full books in PDF, epub, and Kindle. Read online free Numerical Methods For Stiff Equations And Singular Perturbation Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : A. Miranker |
Publisher | : Springer Science & Business Media |
Total Pages | : 224 |
Release | : 2001-11-30 |
Genre | : Computers |
ISBN | : 9781402002984 |
Approach your problems from It isn't that they can't see the the right end and begin with the solution. It is that they can't see the problem. answers. Then, one day, perhaps you will find the final question. The Hermit Clad in Crane Feathers' G. K. Chesterton, The scandal of in R. Van Gulik's The Chinese Maze Father Brown "The point ofa pin" Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.
Author | : Ernst Hairer |
Publisher | : Springer Science & Business Media |
Total Pages | : 615 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 3662099470 |
"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.
Author | : Ülo Lepik |
Publisher | : Springer Science & Business Media |
Total Pages | : 209 |
Release | : 2014-01-09 |
Genre | : Technology & Engineering |
ISBN | : 3319042955 |
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
Author | : Ernst Hairer |
Publisher | : Springer Science & Business Media |
Total Pages | : 541 |
Release | : 2008-04-03 |
Genre | : Mathematics |
ISBN | : 354078862X |
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.
Author | : Uri M. Ascher |
Publisher | : SIAM |
Total Pages | : 620 |
Release | : 1994-12-01 |
Genre | : Mathematics |
ISBN | : 9781611971231 |
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Author | : Zi Cai Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 488 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461333385 |
In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.
Author | : Victoriano Carmona |
Publisher | : Springer |
Total Pages | : 428 |
Release | : 2018-09-15 |
Genre | : Science |
ISBN | : 3319667661 |
This book is part of a two volume set which presents the analysis of nonlinear phenomena as a long-standing challenge for research in basic and applied science as well as engineering. It discusses nonlinear differential and differential equations, bifurcation theory for periodic orbits and global connections. The integrability and reversibility of planar vector fields and theoretical analysis of classic physical models are sketched. This first volume concentrates on the mathematical theory and computational techniques that are essential for the study of nonlinear science, a second volume deals with real-world nonlinear phenomena in condensed matter, biology and optics.
Author | : Alfredo Bellen |
Publisher | : Numerical Mathematics and Scie |
Total Pages | : 411 |
Release | : 2013-01-10 |
Genre | : Business & Economics |
ISBN | : 0199671370 |
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
Author | : V.V. Shaidurov |
Publisher | : Springer Science & Business Media |
Total Pages | : 345 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 940158527X |
Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems.
Author | : A. Bakushinsky |
Publisher | : Springer Science & Business Media |
Total Pages | : 268 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401110263 |
Recent years have been characterized by the increasing amountofpublications in the field ofso-called ill-posed problems. This is easilyunderstandable because we observe the rapid progress of a relatively young branch ofmathematics, ofwhich the first results date back to about 30 years ago. By now, impressive results have been achieved both in the theory ofsolving ill-posed problems and in the applicationsofalgorithms using modem computers. To mention just one field, one can name the computer tomography which could not possibly have been developed without modem tools for solving ill-posed problems. When writing this book, the authors tried to define the place and role of ill posed problems in modem mathematics. In a few words, we define the theory of ill-posed problems as the theory of approximating functions with approximately given arguments in functional spaces. The difference between well-posed and ill posed problems is concerned with the fact that the latter are associated with discontinuous functions. This approach is followed by the authors throughout the whole book. We hope that the theoretical results will be of interest to researchers working in approximation theory and functional analysis. As for particular algorithms for solving ill-posed problems, the authors paid general attention to the principles ofconstructing such algorithms as the methods for approximating discontinuous functions with approximately specified arguments. In this way it proved possible to define the limits of applicability of regularization techniques.