Numerical Methods for Least Squares Problems

Numerical Methods for Least Squares Problems
Author: Ake Bjorck
Publisher: SIAM
Total Pages: 425
Release: 1996-01-01
Genre: Mathematics
ISBN: 9781611971484

The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.

Numerical Methods for Least Squares Problems, Second Edition

Numerical Methods for Least Squares Problems, Second Edition
Author: Åke Björck
Publisher: SIAM
Total Pages: 509
Release: 2024-07-05
Genre: Mathematics
ISBN: 1611977959

The method of least squares, discovered by Gauss in 1795, is a principal tool for reducing the influence of errors when fitting a mathematical model to given observations. Applications arise in many areas of science and engineering. The increased use of automatic data capturing frequently leads to large-scale least squares problems. Such problems can be solved by using recent developments in preconditioned iterative methods and in sparse QR factorization. The first edition of Numerical Methods for Least Squares Problems was the leading reference on the topic for many years. The updated second edition stands out compared to other books on this subject because it provides an in-depth and up-to-date treatment of direct and iterative methods for solving different types of least squares problems and for computing the singular value decomposition. It also is unique because it covers generalized, constrained, and nonlinear least squares problems as well as partial least squares and regularization methods for discrete ill-posed problems. The bibliography of over 1,100 historical and recent references provides a comprehensive survey of past and present research in the field. This book will be of interest to graduate students and researchers in applied mathematics and to researchers working with numerical linear algebra applications.

Solving Least Squares Problems

Solving Least Squares Problems
Author: Charles L. Lawson
Publisher: SIAM
Total Pages: 348
Release: 1995-12-01
Genre: Mathematics
ISBN: 0898713560

This Classic edition includes a new appendix which summarizes the major developments since the book was originally published in 1974. The additions are organized in short sections associated with each chapter. An additional 230 references have been added, bringing the bibliography to over 400 entries. Appendix C has been edited to reflect changes in the associated software package and software distribution method.

A First Course in Numerical Analysis

A First Course in Numerical Analysis
Author: Anthony Ralston
Publisher: Courier Corporation
Total Pages: 644
Release: 2001-01-01
Genre: Mathematics
ISBN: 9780486414546

Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.

The Total Least Squares Problem

The Total Least Squares Problem
Author: Sabine Van Huffel
Publisher: SIAM
Total Pages: 302
Release: 1991-01-01
Genre: Mathematics
ISBN: 0898712750

This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.

Numerical Matrix Analysis

Numerical Matrix Analysis
Author: Ilse C. F. Ipsen
Publisher: SIAM
Total Pages: 135
Release: 2009-07-23
Genre: Mathematics
ISBN: 0898716764

Matrix analysis presented in the context of numerical computation at a basic level.

Numerical Methods for Least Squares Problems

Numerical Methods for Least Squares Problems
Author: Ake Bjorck
Publisher: SIAM
Total Pages: 421
Release: 1996-12-01
Genre: Mathematics
ISBN: 0898713609

The method of least squares: the principal tool for reducing the influence of errors when fitting models to given observations.

Accuracy and Stability of Numerical Algorithms

Accuracy and Stability of Numerical Algorithms
Author: Nicholas J. Higham
Publisher: SIAM
Total Pages: 710
Release: 2002-01-01
Genre: Mathematics
ISBN: 9780898718027

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.

Numerical Linear Algebra and Applications

Numerical Linear Algebra and Applications
Author: Biswa Nath Datta
Publisher: SIAM
Total Pages: 546
Release: 2010-01-01
Genre: Mathematics
ISBN: 0898717655

Full of features and applications, this acclaimed textbook for upper undergraduate level and graduate level students includes all the major topics of computational linear algebra, including solution of a system of linear equations, least-squares solutions of linear systems, computation of eigenvalues, eigenvectors, and singular value problems. Drawing from numerous disciplines of science and engineering, the author covers a variety of motivating applications. When a physical problem is posed, the scientific and engineering significance of the solution is clearly stated. Each chapter contains a summary of the important concepts developed in that chapter, suggestions for further reading, and numerous exercises, both theoretical and MATLAB and MATCOM based. The author also provides a list of key words for quick reference. The MATLAB toolkit available online, 'MATCOM', contains implementations of the major algorithms in the book and will enable students to study different algorithms for the same problem, comparing efficiency, stability, and accuracy.

Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 292
Release: 2011-01-01
Genre: Mathematics
ISBN: 9781611970739

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.