Free Boundary Problems

Free Boundary Problems
Author: Pierluigi Colli
Publisher: Birkhäuser
Total Pages: 342
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034878931

Many phenomena of interest for applications are represented by differential equations which are defined in a domain whose boundary is a priori unknown, and is accordingly named a "free boundary". A further quantitative condition is then provided in order to exclude indeterminacy. Free boundary problems thus encompass a broad spectrum which is represented in this state-of-the-art volume by a variety of contributions of researchers in mathematics and applied fields like physics, biology and material sciences. Special emphasis has been reserved for mathematical modelling and for the formulation of new problems.

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems
Author: Olaf Steinbach
Publisher: Springer Science & Business Media
Total Pages: 392
Release: 2007-12-22
Genre: Mathematics
ISBN: 0387688056

This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.

Numerical Methods for Free Boundary Problems

Numerical Methods for Free Boundary Problems
Author: VEITTAANMÄKI
Publisher: Birkhäuser
Total Pages: 431
Release: 2013-11-22
Genre: Science
ISBN: 3034857152

About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capillary convection in float-zone crystal growth. V. Rivkind considered numerical methods for solving coupled Navier-Stokes and Stefan equations. Besides of those invited lectures mentioned above there were 37 contributed papers presented. We shall briefly outline the topics of the contributed papers: Stefan like problems. Modelling, existence and uniqueness.

Variational Principles and Free-boundary Problems

Variational Principles and Free-boundary Problems
Author: Avner Friedman
Publisher:
Total Pages: 728
Release: 1988
Genre: Mathematics
ISBN:

This advanced graduate-level text examines variational methods in partial differential equations and illustrates their applications to a number of free-boundary problems. Detailed statements of the standard theory of elliptic and parabolic operators make this treatment readable for engineers, students, and nonspecialists alike. The text's first two chapters can be used for a single-semester graduate course in variational inequalities or partial differential equations. The succeeding chapters -- covering jets and cavities, variational problems with potentials, and free-boundary problems not in variational form -- are more specialized and self-contained. Readers who have mastered chapters 1 and 2 will be able to conduct research on the problems explored in subsequent chapters. Bibliographic remarks conclude each chapter, along with several problems and exercises.

Free Boundary Problems

Free Boundary Problems
Author: Ioannis Athanasopoulos
Publisher: CRC Press
Total Pages: 372
Release: 1999-06-25
Genre: Mathematics
ISBN: 9781584880189

Free boundary problems arise in an enormous number of situations in nature and technology. They hold a strategic position in pure and applied sciences and thus have been the focus of considerable research over the last three decades. Free Boundary Problems: Theory and Applications presents the work and results of experts at the forefront of current research in mathematics, material sciences, chemical engineering, biology, and physics. It contains the plenary lectures and contributed papers of the 1997 International Interdisciplinary Congress proceedings held in Crete. The main topics addressed include free boundary problems in fluid and solid mechanics, combustion, the theory of filtration, and glaciology. Contributors also discuss material science modeling, recent mathematical developments, and numerical analysis advances within their presentations of more specific topics, such as singularities of interfaces, cusp cavitation and fracture, capillary fluid dynamics of film coating, dynamics of surface growth, phase transition kinetics, and phase field models. With the implications of free boundary problems so far reaching, it becomes important for researchers from all of these fields to stay abreast of new developments. Free Boundary Problems: Theory and Applications provides the opportunity to do just that, presenting recent advances from more than 50 researchers at the frontiers of science, mathematics, and technology.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
Author: Uri M. Ascher
Publisher: SIAM
Total Pages: 620
Release: 1994-12-01
Genre: Mathematics
ISBN: 9781611971231

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Numerical Methods in Fluid Dynamics

Numerical Methods in Fluid Dynamics
Author: Gary A. Sod
Publisher: Cambridge University Press
Total Pages: 464
Release: 1985-10-31
Genre: Mathematics
ISBN: 9780521259248

Here is an introduction to numerical methods for partial differential equations with particular reference to those that are of importance in fluid dynamics. The author gives a thorough and rigorous treatment of the techniques, beginning with the classical methods and leading to a discussion of modern developments. For easier reading and use, many of the purely technical results and theorems are given separately from the main body of the text. The presentation is intended for graduate students in applied mathematics, engineering and physical sciences who have a basic knowledge of partial differential equations.

Free and Moving Boundary Problems

Free and Moving Boundary Problems
Author: John Crank
Publisher: Oxford University Press, USA
Total Pages: 438
Release: 1984
Genre: Mathematics
ISBN:

Here is a wide-ranging, comprehensive account of the mathematical formulation of problems involving free boundaries as they occur in such diverse areas as hydrology, metallurgy, chemical engineering, soil science, molecular biology, materials science, and steel and glass production. Many newmethods of solution are discussed, including modern computer techniques which address multidimensional, multiphase practical problems.

Artificial Boundary Method

Artificial Boundary Method
Author: Houde Han
Publisher: Springer Science & Business Media
Total Pages: 434
Release: 2013-04-13
Genre: Mathematics
ISBN: 3642354645

"Artificial Boundary Method" systematically introduces the artificial boundary method for the numerical solutions of partial differential equations in unbounded domains. Detailed discussions treat different types of problems, including Laplace, Helmholtz, heat, Schrödinger, and Navier and Stokes equations. Both numerical methods and error analysis are discussed. The book is intended for researchers working in the fields of computational mathematics and mechanical engineering. Prof. Houde Han works at Tsinghua University, China; Prof. Xiaonan Wu works at Hong Kong Baptist University, China.

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
Author: Ben Q. Li
Publisher: Springer Science & Business Media
Total Pages: 587
Release: 2006-06-29
Genre: Technology & Engineering
ISBN: 1846282055

Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.