Number Theory
Author | : Kazuya Kato |
Publisher | : American Mathematical Soc. |
Total Pages | : 243 |
Release | : 2000 |
Genre | : Class field theory |
ISBN | : 0821820958 |
Download Number Theory 3 full books in PDF, epub, and Kindle. Read online free Number Theory 3 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kazuya Kato |
Publisher | : American Mathematical Soc. |
Total Pages | : 243 |
Release | : 2000 |
Genre | : Class field theory |
ISBN | : 0821820958 |
Author | : Bowen Kerins |
Publisher | : American Mathematical Soc. |
Total Pages | : 218 |
Release | : 2015-10-15 |
Genre | : Education |
ISBN | : 147042195X |
Designed for precollege teachers by a collaborative of teachers, educators, and mathematicians, Famous Functions in Number Theory is based on a course offered in the Summer School Teacher Program at the Park City Mathematics Institute. But this book isn't a "course" in the traditional sense. It consists of a carefully sequenced collection of problem sets designed to develop several interconnected mathematical themes, and one of the goals of the problem sets is for readers to uncover these themes for themselves. Famous Functions in Number Theory introduces readers to the use of formal algebra in number theory. Through numerical experiments, participants learn how to use polynomial algebra as a bookkeeping mechanism that allows them to count divisors, build multiplicative functions, and compile multiplicative functions in a certain way that produces new ones. One capstone of the investigations is a beautiful result attributed to Fermat that determines the number of ways a positive integer can be written as a sum of two perfect squares. Famous Functions in Number Theory is a volume of the book series "IAS/PCMI-The Teacher Program Series" published by the American Mathematical Society. Each volume in that series covers the content of one Summer School Teacher Program year and is independent of the rest. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Author | : S. Lang |
Publisher | : Springer Science & Business Media |
Total Pages | : 383 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475718101 |
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
Author | : William J. LeVeque |
Publisher | : Courier Corporation |
Total Pages | : 292 |
Release | : 2014-01-05 |
Genre | : Mathematics |
ISBN | : 0486141500 |
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.
Author | : Richard Friedberg |
Publisher | : Courier Corporation |
Total Pages | : 241 |
Release | : 2012-07-06 |
Genre | : Mathematics |
ISBN | : 0486152693 |
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.
Author | : G. Tenenbaum |
Publisher | : Cambridge University Press |
Total Pages | : 180 |
Release | : 1995-06-30 |
Genre | : Mathematics |
ISBN | : 9780521412612 |
This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.
Author | : Oystein Ore |
Publisher | : Courier Corporation |
Total Pages | : 404 |
Release | : 2012-07-06 |
Genre | : Mathematics |
ISBN | : 0486136434 |
Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.
Author | : Emil Grosswald |
Publisher | : Springer Science & Business Media |
Total Pages | : 336 |
Release | : 2010-02-23 |
Genre | : Mathematics |
ISBN | : 0817648380 |
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.
Author | : George E. Andrews |
Publisher | : Courier Corporation |
Total Pages | : 292 |
Release | : 2012-04-30 |
Genre | : Mathematics |
ISBN | : 0486135101 |
Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.
Author | : Ellina Grigorieva |
Publisher | : Birkhäuser |
Total Pages | : 405 |
Release | : 2018-07-06 |
Genre | : Mathematics |
ISBN | : 3319909150 |
Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.