Bayesian Inference of State Space Models

Bayesian Inference of State Space Models
Author: Kostas Triantafyllopoulos
Publisher: Springer Nature
Total Pages: 503
Release: 2021-11-12
Genre: Mathematics
ISBN: 303076124X

Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics
Author: Gary Koop
Publisher: Now Publishers Inc
Total Pages: 104
Release: 2010
Genre: Business & Economics
ISBN: 160198362X

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics provides a survey of the Bayesian methods used in modern empirical macroeconomics. These models have been developed to address the fact that most questions of interest to empirical macroeconomists involve several variables and must be addressed using multivariate time series methods. Many different multivariate time series models have been used in macroeconomics, but Vector Autoregressive (VAR) models have been among the most popular. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics reviews and extends the Bayesian literature on VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. The authors go beyond simply defining each model, but specify how to use them in practice, discuss the advantages and disadvantages of each and offer tips on when and why each model can be used.

Time Series

Time Series
Author: Raquel Prado
Publisher: CRC Press
Total Pages: 375
Release: 2010-05-21
Genre: Mathematics
ISBN: 1420093363

Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling and analysis, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and emerging topics at research frontiers. The book presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. The authors also explore the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian tools, such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. They illustrate the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, and finance. Data sets, R and MATLAB® code, and other material are available on the authors’ websites. Along with core models and methods, this text offers sophisticated tools for analyzing challenging time series problems. It also demonstrates the growth of time series analysis into new application areas.

Handbook of Financial Time Series

Handbook of Financial Time Series
Author: Torben Gustav Andersen
Publisher: Springer Science & Business Media
Total Pages: 1045
Release: 2009-04-21
Genre: Business & Economics
ISBN: 3540712976

The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.

Dynamic Linear Models with R

Dynamic Linear Models with R
Author: Giovanni Petris
Publisher: Springer Science & Business Media
Total Pages: 258
Release: 2009-06-12
Genre: Mathematics
ISBN: 0387772383

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Automatic Nonuniform Random Variate Generation

Automatic Nonuniform Random Variate Generation
Author: Wolfgang Hörmann
Publisher: Springer Science & Business Media
Total Pages: 456
Release: 2004-01-12
Genre: Business & Economics
ISBN: 9783540406525

Non-uniform random variate generation is an established research area in the intersection of mathematics, statistics and computer science. Although random variate generation with popular standard distributions have become part of every course on discrete event simulation and on Monte Carlo methods, the recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in literature. This new concept has great practical advantages that are little known to most simulation practitioners. Being unique in its overall organization the book covers not only the mathematical and statistical theory, but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.

Bayesian Theory and Applications

Bayesian Theory and Applications
Author: Paul Damien
Publisher: Oxford University Press
Total Pages: 717
Release: 2013-01-24
Genre: Mathematics
ISBN: 0199695601

This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

Statistical Methods in Finance

Statistical Methods in Finance
Author: G. S. Maddala
Publisher:
Total Pages: 760
Release: 1996-12-11
Genre: Business & Economics
ISBN:

A comprehensive reference work for teaching at graduate level and research in empirical finance. The chapters cover a wide range of statistical and probabilistic methods applied to a variety of financial methods and are written by internationally renowned experts.

Bayesian Statistics 6

Bayesian Statistics 6
Author: J. M. Bernardo
Publisher: Oxford University Press
Total Pages: 886
Release: 1999-08-12
Genre: Business & Economics
ISBN: 9780198504856

Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.