Nonstandard Analysis And Vector Lattices
Download Nonstandard Analysis And Vector Lattices full books in PDF, epub, and Kindle. Read online free Nonstandard Analysis And Vector Lattices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Semën Samsonovich Kutateladze |
Publisher | : Springer Science & Business Media |
Total Pages | : 312 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401143056 |
Nonstandard methods of analysis consist generally in comparative study of two interpretations of a mathematical claim or construction given as a formal symbolic expression by means of two different set-theoretic models: one, a "standard" model and the other, a "nonstandard" model. The second half of the twentieth century is a period of significant progress in these methods and their rapid development in a few directions. The first of the latter appears often under the name coined by its inventor, A. Robinson. This memorable but slightly presumptuous and defiant term, non standard analysis, often swaps places with the term Robinsonian or classical non standard analysis. The characteristic feature of Robinsonian analysis is a frequent usage of many controversial concepts appealing to the actual infinitely small and infinitely large quantities that have resided happily in natural sciences from ancient times but were strictly forbidden in modern mathematics for many decades. The present-day achievements revive the forgotten term infinitesimal analysis which reminds us expressively of the heroic bygones of Calculus. Infinitesimal analysis expands rapidly, bringing about radical reconsideration of the general conceptual system of mathematics. The principal reasons for this progress are twofold. Firstly, infinitesimal analysis provides us with a novel under standing for the method of indivisibles rooted deeply in the mathematical classics.
Author | : Semën Samsonovich Kutateladze |
Publisher | : Springer Science & Business Media |
Total Pages | : 465 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 940090195X |
The theory of vector lattices, stemming from the mid-thirties, is now at the stage where its main achievements are being summarized. The sweeping changes of the last two decades have changed its image completely. The range of its application was expanded and enriched so as to embrace diverse branches of the theory of functions, geometry of Banach spaces, operator theory, convex analysis, etc. Furthermore, the theory of vector lattices was impregnated with principally new tools and techniques from other sections of mathematics. These circumstances gave rise to a series of mono graphs treating separate aspects of the theory and oriented to specialists. At the same time, the necessity of a book intended for a wider readership, reflecting the modern diretions of research became clear. The present book is meant to be an attempt at implementing this task. Although oriented to readers making their first acquaintance with vector-lattice theory, it is composed so that the main topics dealt with in the book reach the current level of research in the field, which is of interest and import for specialists. The monograph was conceived so as to be divisible into two parts that can be read independently of one another. The first part is mainly Chapter 1, devoted to the so-called Boolean-valued analysis of vector lattices. The term designates the applica tion of the theory of Boolean-valued models by D. Scott, R. Solovay and P.
Author | : Nigel Cutland |
Publisher | : Cambridge University Press |
Total Pages | : 365 |
Release | : 1988-09-30 |
Genre | : Mathematics |
ISBN | : 052135109X |
This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject.
Author | : Leonid Arkadʹevich Bokutʹ |
Publisher | : American Mathematical Soc. |
Total Pages | : 204 |
Release | : 1995 |
Genre | : Algebra |
ISBN | : 9780821802861 |
This book contains papers presented at the Third Siberian School: Algebra and Analysis, held in Irkutsk in the summer of 1989. Drawing 130 participants from all over the former Soviet Union, the school sought to acquaint Siberian and other mathematicians with the latest achievements in a wide variety of mathematical areas and to give young researchers an opportunity to present their work. The papers presented here range over topics in algebra, analysis, geometry, and topology.
Author | : Peter A. Loeb |
Publisher | : Springer |
Total Pages | : 485 |
Release | : 2015-08-26 |
Genre | : Mathematics |
ISBN | : 9401773270 |
Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.
Author | : Yuri Abramovich |
Publisher | : Springer Science & Business Media |
Total Pages | : 301 |
Release | : 2012-12-06 |
Genre | : Business & Economics |
ISBN | : 3642722229 |
In July of 1996, the conference Nonlinear Analysis and its Applications in Engineering and Economics took place on the Greek island of Samos, the birthplace of Pythagoras. During this conference, a special session was held on th the occasion of the 50 birthday of the well known mathematician and math ematical economist Professor Charalambos Aliprantis, who, by his numerous friends, is usually called Roko. The story behind this nickname is not quite clear yet; it will be investigated further and will be made public prior to his th 60 birthday. (At this moment we have already found out that it has nothing to do with the famous movie Rocco and his Brothers even though Roko does have two brothers. ) Roko was born on the Greek island of Cephalonia on May 12,1946, and his elementary and secondary school education took place there. At 18 he entered the Mathematics Department at the University of Athens. Upon graduation from the University of Athens he proceeded with his graduate studies at Cal tech, where in 1973 he completed his Ph. D. degree in Mathematics under the supervision of Professor W. A. J. Luxemburg. His research career can be divided into two periods. The first one, till 1981, was devoted entirely to pure mathematics. The other one, after 1981, has been subdivided between pure mathematics and mathematical economics. The main objects of Roko's work in pure mathematics are spaces with order structure (Riesz spaces) and operators acting on them.
Author | : E.I. Gordon |
Publisher | : Springer Science & Business Media |
Total Pages | : 435 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 940170063X |
Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0
Author | : A.E. Hurd |
Publisher | : Springer |
Total Pages | : 222 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 3540396020 |
Author | : Leif O. Arkeryd |
Publisher | : Springer Science & Business Media |
Total Pages | : 392 |
Release | : 1997-04-30 |
Genre | : Mathematics |
ISBN | : 9780792345862 |
1 More than thirty years after its discovery by Abraham Robinson , the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum,as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians.
Author | : E. Pap |
Publisher | : Elsevier |
Total Pages | : 1633 |
Release | : 2002-10-31 |
Genre | : Mathematics |
ISBN | : 0080533094 |
The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other areas as well as physicists, computerscientists, engineers and econometrists will find useful results andpowerful methods for their research. The reader may find in theHandbook many close relations to other mathematical areas: realanalysis, probability theory, statistics, ergodic theory,functional analysis, potential theory, topology, set theory,geometry, differential equations, optimization, variationalanalysis, decision making and others. The Handbook is a richsource of relevant references to articles, books and lecturenotes and it contains for the reader's convenience an extensivesubject and author index.