Nonparametric Statistical Methods

Nonparametric Statistical Methods
Author: Myles Hollander
Publisher: John Wiley & Sons
Total Pages: 872
Release: 2013-11-25
Genre: Mathematics
ISBN: 1118553292

Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Nonparametric Statistics: Theory And Methods

Nonparametric Statistics: Theory And Methods
Author: Jayant V Deshpande
Publisher: World Scientific
Total Pages: 279
Release: 2017-10-17
Genre: Mathematics
ISBN: 981466359X

The number of books on Nonparametric Methodology is quite small as compared to, say, on Design of Experiments, Regression Analysis, Multivariate Analysis, etc. Because of being perceived as less effective, nonparametric methods are still the second choice. Actually, it has been demonstrated time and again that they are useful. We feel that there is still need for proper texts/applications/reference books on Nonparametric Methodology.This book will introduce various types of data encountered in practice and suggest the appropriate nonparametric methods, discuss their properties through null and non-null distributions whenever possible and demonstrate the very minor loss in power and efficiency in the nonparametric method, if any.The book will cover almost all topics of current interest such as bootstrapping, ranked set sampling, techniques for censored data and Bayesian analysis under nonparametric set ups.

All of Nonparametric Statistics

All of Nonparametric Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2006-09-10
Genre: Mathematics
ISBN: 0387306234

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

Mathematical Nonparametric Statistics

Mathematical Nonparametric Statistics
Author: Manoukian
Publisher: CRC Press
Total Pages: 346
Release: 1986-11-10
Genre: Mathematics
ISBN: 9782881240935

First published in 1986. Primarily a reference text, Mathematical Nonparametric Statistics provides mathematicians and students with a systematic mathematical analysis and the fine points of nonparametrical statistical procedures and models used in practice. Divided into five sections and beginning with an extensive chapter on the fundamentals of mathematical statistical methods, its coverage of such topics as the Jackknife method, the Kolmogorov-Smirnov statistic, Box's method and the ch-squared test of fit is rigorous. Written for audiences with differing backgounds in mathematics, the book is of special use to those in the management sciences, industrial engineering, psychology and economics, as well as mathematics.

Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods
Author: Thomas P. Hettmansperger
Publisher: John Wiley & Sons
Total Pages: 492
Release: 1998
Genre: Nonparametric statistics
ISBN:

Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.

Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R
Author: John Kloke
Publisher: CRC Press
Total Pages: 283
Release: 2014-10-09
Genre: Mathematics
ISBN: 1439873445

A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.

Theory of Nonparametric Tests

Theory of Nonparametric Tests
Author: Thorsten Dickhaus
Publisher: Springer
Total Pages: 134
Release: 2018-03-27
Genre: Mathematics
ISBN: 3319763156

This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.

An Introduction to Nonparametric Statistics

An Introduction to Nonparametric Statistics
Author: John E. Kolassa
Publisher: CRC Press
Total Pages: 225
Release: 2020-09-28
Genre: Mathematics
ISBN: 0429511361

An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

Nonparametric Methods in Statistics with SAS Applications

Nonparametric Methods in Statistics with SAS Applications
Author: Olga Korosteleva
Publisher: CRC Press
Total Pages: 193
Release: 2013-08-19
Genre: Mathematics
ISBN: 1466580631

Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods.The text begins wit

Methodology in Robust and Nonparametric Statistics

Methodology in Robust and Nonparametric Statistics
Author: Jana Jureckova
Publisher: CRC Press
Total Pages: 410
Release: 2012-07-20
Genre: Mathematics
ISBN: 1439840695

Robust and nonparametric statistical methods have their foundation in fields ranging from agricultural science to astronomy, from biomedical sciences to the public health disciplines, and, more recently, in genomics, bioinformatics, and financial statistics. These disciplines are presently nourished by data mining and high-level computer-based algo