Nonparametric Hazard Rate Estimation With Left Truncated And Right Censored Data
Download Nonparametric Hazard Rate Estimation With Left Truncated And Right Censored Data full books in PDF, epub, and Kindle. Read online free Nonparametric Hazard Rate Estimation With Left Truncated And Right Censored Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John P. Klein |
Publisher | : Springer Science & Business Media |
Total Pages | : 508 |
Release | : 2013-06-29 |
Genre | : Medical |
ISBN | : 1475727283 |
Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.
Author | : Sam Efromovich |
Publisher | : Springer Science & Business Media |
Total Pages | : 423 |
Release | : 2008-01-19 |
Genre | : Mathematics |
ISBN | : 0387226389 |
This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis. The companion software package, available over the Internet, brings all of the discussed topics into the realm of interactive research. Virtually every claim and development mentioned in the book is illustrated with graphs which are available for the reader to reproduce and modify, making the material fully transparent and allowing for complete interactivity.
Author | : Stuart A. Klugman |
Publisher | : John Wiley & Sons |
Total Pages | : 758 |
Release | : 2012-01-25 |
Genre | : Business & Economics |
ISBN | : 0470391332 |
An update of one of the most trusted books on constructing and analyzing actuarial models Written by three renowned authorities in the actuarial field, Loss Models, Third Edition upholds the reputation for excellence that has made this book required reading for the Society of Actuaries (SOA) and Casualty Actuarial Society (CAS) qualification examinations. This update serves as a complete presentation of statistical methods for measuring risk and building models to measure loss in real-world events. This book maintains an approach to modeling and forecasting that utilizes tools related to risk theory, loss distributions, and survival models. Random variables, basic distributional quantities, the recursive method, and techniques for classifying and creating distributions are also discussed. Both parametric and non-parametric estimation methods are thoroughly covered along with advice for choosing an appropriate model. Features of the Third Edition include: Extended discussion of risk management and risk measures, including Tail-Value-at-Risk (TVaR) New sections on extreme value distributions and their estimation Inclusion of homogeneous, nonhomogeneous, and mixed Poisson processes Expanded coverage of copula models and their estimation Additional treatment of methods for constructing confidence regions when there is more than one parameter The book continues to distinguish itself by providing over 400 exercises that have appeared on previous SOA and CAS examinations. Intriguing examples from the fields of insurance and business are discussed throughout, and all data sets are available on the book's FTP site, along with programs that assist with conducting loss model analysis. Loss Models, Third Edition is an essential resource for students and aspiring actuaries who are preparing to take the SOA and CAS preliminary examinations. It is also a must-have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with loss and risk models in their everyday work. To explore our additional offerings in actuarial exam preparation visit www.wiley.com/go/actuarialexamprep.
Author | : Mara Tableman |
Publisher | : CRC Press |
Total Pages | : 277 |
Release | : 2003-07-28 |
Genre | : Mathematics |
ISBN | : 0203501411 |
Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.
Author | : Sam Efromovich |
Publisher | : CRC Press |
Total Pages | : 448 |
Release | : 2018-03-12 |
Genre | : Mathematics |
ISBN | : 1351679848 |
This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.
Author | : John P. Klein |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 9401579830 |
Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.
Author | : Jianguo Sun |
Publisher | : Springer |
Total Pages | : 310 |
Release | : 2007-05-26 |
Genre | : Mathematics |
ISBN | : 0387371192 |
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.
Author | : Thomas R. Fleming |
Publisher | : John Wiley & Sons |
Total Pages | : 454 |
Release | : 2011-09-20 |
Genre | : Mathematics |
ISBN | : 111815066X |
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "The book is a valuable completion of the literature in this field. It is written in an ambitious mathematical style and can be recommended to statisticians as well as biostatisticians." -Biometrische Zeitschrift "Not many books manage to combine convincingly topics from probability theory over mathematical statistics to applied statistics. This is one of them. The book has other strong points to recommend it: it is written with meticulous care, in a lucid style, general results being illustrated by examples from statistical theory and practice, and a bunch of exercises serve to further elucidate and elaborate on the text." -Mathematical Reviews "This book gives a thorough introduction to martingale and counting process methods in survival analysis thereby filling a gap in the literature." -Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts "The authors have performed a valuable service to researchers in providing this material in [a] self-contained and accessible form. . . This text [is] essential reading for the probabilist or mathematical statistician working in the area of survival analysis." -Short Book Reviews, International Statistical Institute Counting Processes and Survival Analysis explores the martingale approach to the statistical analysis of counting processes, with an emphasis on the application of those methods to censored failure time data. This approach has proven remarkably successful in yielding results about statistical methods for many problems arising in censored data. A thorough treatment of the calculus of martingales as well as the most important applications of these methods to censored data is offered. Additionally, the book examines classical problems in asymptotic distribution theory for counting process methods and newer methods for graphical analysis and diagnostics of censored data. Exercises are included to provide practice in applying martingale methods and insight into the calculus itself.
Author | : Yichuan Zhao |
Publisher | : Springer |
Total Pages | : 473 |
Release | : 2018-12-05 |
Genre | : Mathematics |
ISBN | : 3319993895 |
This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.
Author | : Torben Martinussen |
Publisher | : Springer Science & Business Media |
Total Pages | : 471 |
Release | : 2007-11-24 |
Genre | : Medical |
ISBN | : 0387339604 |
This book studies and applies modern flexible regression models for survival data with a special focus on extensions of the Cox model and alternative models with the aim of describing time-varying effects of explanatory variables. Use of the suggested models and methods is illustrated on real data examples, using the R-package timereg developed by the authors, which is applied throughout the book with worked examples for the data sets.