Nonlinear Vibrations And The Wave Equation
Download Nonlinear Vibrations And The Wave Equation full books in PDF, epub, and Kindle. Read online free Nonlinear Vibrations And The Wave Equation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alain Haraux |
Publisher | : Springer |
Total Pages | : 110 |
Release | : 2018-05-02 |
Genre | : Mathematics |
ISBN | : 331978515X |
This book gathers the revised lecture notes from a seminar course offered at the Federal University of Rio de Janeiro in 1986, then in Tokyo in 1987. An additional chapter has been added to reflect more recent advances in the field.
Author | : Massimiliano Berti |
Publisher | : Springer Science & Business Media |
Total Pages | : 191 |
Release | : 2007-10-01 |
Genre | : Mathematics |
ISBN | : 0817646809 |
Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.
Author | : Steven L. Garrett |
Publisher | : Springer |
Total Pages | : 913 |
Release | : 2017-02-24 |
Genre | : Science |
ISBN | : 3319499785 |
This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.
Author | : W.-M. Ni |
Publisher | : Springer Science & Business Media |
Total Pages | : 364 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461396085 |
In recent years considerable interest has been focused on nonlinear diffu sion problems, the archetypical equation for these being Ut = ~U + f(u). Here ~ denotes the n-dimensional Laplacian, the solution u = u(x, t) is defined over some space-time domain of the form n x [O,T], and f(u) is a given real function whose form is determined by various physical and mathematical applications. These applications have become more varied and widespread as problem after problem has been shown to lead to an equation of this type or to its time-independent counterpart, the elliptic equation of equilibrium ~u+f(u)=O. Particular cases arise, for example, in population genetics, the physics of nu clear stability, phase transitions between liquids and gases, flows in porous media, the Lend-Emden equation of astrophysics, various simplified com bustion models, and in determining metrics which realize given scalar or Gaussian curvatures. In the latter direction, for example, the problem of finding conformal metrics with prescribed curvature leads to a ground state problem involving critical exponents. Thus not only analysts, but geome ters as well, can find common ground in the present work. The corresponding mathematical problem is to determine how the struc ture of the nonlinear function f(u) influences the behavior of the solution.
Author | : Malte Krack |
Publisher | : Springer |
Total Pages | : 167 |
Release | : 2019-03-23 |
Genre | : Technology & Engineering |
ISBN | : 3030140237 |
This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.
Author | : G. B. Whitham |
Publisher | : John Wiley & Sons |
Total Pages | : 660 |
Release | : 2011-10-18 |
Genre | : Science |
ISBN | : 1118031202 |
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Author | : Peter Hagedorn |
Publisher | : John Wiley & Sons |
Total Pages | : 396 |
Release | : 2007-10-22 |
Genre | : Science |
ISBN | : 9780470518427 |
The subject of vibrations is of fundamental importance in engineering and technology. Discrete modelling is sufficient to understand the dynamics of many vibrating systems; however a large number of vibration phenomena are far more easily understood when modelled as continuous systems. The theory of vibrations in continuous systems is crucial to the understanding of engineering problems in areas as diverse as automotive brakes, overhead transmission lines, liquid filled tanks, ultrasonic testing or room acoustics. Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics. Presents dynamics and analysis techniques for a wide range of continuous systems including strings, bars, beams, membranes, plates, fluids and elastic bodies in one, two and three dimensions. Covers special topics such as the interaction of discrete and continuous systems, vibrations in translating media, and sound emission from vibrating surfaces, among others. Develops the reader’s understanding by progressing from very simple results to more complex analysis without skipping the key steps in the derivations. Offers a number of new topics and exercises that form essential steppingstones to the present level of research in the field. Includes exercises at the end of the chapters based on both the academic and practical experience of the authors. Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will be suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field.
Author | : P.S Landa |
Publisher | : Springer Science & Business Media |
Total Pages | : 550 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 9401587639 |
A rich variety of books devoted to dynamical chaos, solitons, self-organization has appeared in recent years. These problems were all considered independently of one another. Therefore many of readers of these books do not suspect that the problems discussed are divisions of a great generalizing science - the theory of oscillations and waves. This science is not some branch of physics or mechanics, it is a science in its own right. It is in some sense a meta-science. In this respect the theory of oscillations and waves is closest to mathematics. In this book we call the reader's attention to the present-day theory of non-linear oscillations and waves. Oscillatory and wave processes in the systems of diversified physical natures, both periodic and chaotic, are considered from a unified poin t of view . The relation between the theory of oscillations and waves, non-linear dynamics and synergetics is discussed. One of the purposes of this book is to convince reader of the necessity of a thorough study popular branches of of the theory of oscillat ions and waves, and to show that such science as non-linear dynamics, synergetics, soliton theory, and so on, are, in fact , constituent parts of this theory. The primary audiences for this book are researchers having to do with oscillatory and wave processes, and both students and post-graduate students interested in a deep study of the general laws and applications of the theory of oscillations and waves.
Author | : Muthusamy Lakshmanan |
Publisher | : Springer Science & Business Media |
Total Pages | : 628 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642556884 |
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
Author | : Enrique Zuazua |
Publisher | : Springer Nature |
Total Pages | : 144 |
Release | : |
Genre | : |
ISBN | : 3031588576 |