Variational Methods

Variational Methods
Author: Michael Struwe
Publisher: Springer Science & Business Media
Total Pages: 288
Release: 2013-04-17
Genre: Science
ISBN: 3662032120

Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field.

Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems

Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems
Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
Total Pages: 400
Release: 2003-05-31
Genre: Mathematics
ISBN: 9781402013850

This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following.

Nonlinear Variational Problems and Partial Differential Equations

Nonlinear Variational Problems and Partial Differential Equations
Author: A Marino
Publisher: CRC Press
Total Pages: 316
Release: 1995-02-27
Genre: Mathematics
ISBN: 9780582234369

Contains proceedings of a conference held in Italy in late 1990 dedicated to discussing problems and recent progress in different aspects of nonlinear analysis such as critical point theory, global analysis, nonlinear evolution equations, hyperbolic problems, conservation laws, fluid mechanics, gamma-convergence, homogenization and relaxation methods, Hamilton-Jacobi equations, and nonlinear elliptic and parabolic systems. Also discussed are applications to some questions in differential geometry, and nonlinear partial differential equations.

Variational Methods in Nonlinear Analysis

Variational Methods in Nonlinear Analysis
Author: Dimitrios C. Kravvaritis
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 584
Release: 2020-04-06
Genre: Mathematics
ISBN: 3110647451

This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.

Variational Methods

Variational Methods
Author: Michael Struwe
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 2008-11-05
Genre: Science
ISBN: 3540740139

This, the fourth edition of Stuwe’s book on the calculus of variations, surveys new developments in this exciting field. It also gives a concise introduction to variational methods. In particular it includes the proof for the convergence of the Yamabe flow and a detailed treatment of the phenomenon of blow-up. Recently discovered results for backward bubbling in the heat flow for harmonic maps or surfaces are discussed. A number of changes have been made throughout the text.

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems
Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
Total Pages: 465
Release: 2013-11-19
Genre: Mathematics
ISBN: 1461493234

This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem
Author: Roland Glowinski
Publisher: SIAM
Total Pages: 473
Release: 2015-11-04
Genre: Mathematics
ISBN: 1611973783

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Nonsmooth Variational Problems and Their Inequalities

Nonsmooth Variational Problems and Their Inequalities
Author: Siegfried Carl
Publisher: Springer Science & Business Media
Total Pages: 404
Release: 2007-06-07
Genre: Mathematics
ISBN: 038746252X

This monograph focuses primarily on nonsmooth variational problems that arise from boundary value problems with nonsmooth data and/or nonsmooth constraints, such as multivalued elliptic problems, variational inequalities, hemivariational inequalities, and their corresponding evolution problems. It provides a systematic and unified exposition of comparison principles based on a suitably extended sub-supersolution method.

Noncoercive Variational Problems and Related Results

Noncoercive Variational Problems and Related Results
Author: Daniel Goeleven
Publisher: CRC Press
Total Pages: 186
Release: 1996-10-10
Genre: Mathematics
ISBN: 9780582304024

In establishing a general theory of the existence of solutions for noncoercive variational problems and constrained problems formulated as variational inequalities or hemivariational inequalities, this Research Note illustrates recent mathematical approaches and results with various examples from mathematics and mechanics. The book unifies ideas for the treatment of various noncoercive problems and provides previously unpublished results for variational inequalities and hemivariational inequalities. The author points out important applications in mechanics and their mathfematical tratment using recession tools. This book will be of particular interest to researchers in pure and aplied mathematics and mechanics.

Variational Methods

Variational Methods
Author: Michael Struwe
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2012-12-06
Genre: Science
ISBN: 3662041944

Hilberts talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateaus problem by Douglas and Rad. This third edition gives a concise introduction to variational methods and presents an overview of areas of current research in the field, plus a survey on new developments.