Nonlinear system identification. 1. Nonlinear system parameter identification
Author | : Robert Haber |
Publisher | : Springer Science & Business Media |
Total Pages | : 432 |
Release | : 1999 |
Genre | : Nonlinear theories |
ISBN | : 9780792358565 |
Download Nonlinear System Identification Input Output Modeling Approach full books in PDF, epub, and Kindle. Read online free Nonlinear System Identification Input Output Modeling Approach ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Robert Haber |
Publisher | : Springer Science & Business Media |
Total Pages | : 432 |
Release | : 1999 |
Genre | : Nonlinear theories |
ISBN | : 9780792358565 |
Author | : Stephen A. Billings |
Publisher | : John Wiley & Sons |
Total Pages | : 611 |
Release | : 2013-07-29 |
Genre | : Technology & Engineering |
ISBN | : 1118535553 |
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Author | : Oliver Nelles |
Publisher | : Springer Science & Business Media |
Total Pages | : 785 |
Release | : 2013-03-09 |
Genre | : Technology & Engineering |
ISBN | : 3662043238 |
Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.
Author | : Robert Haber |
Publisher | : Springer Science & Business Media |
Total Pages | : 428 |
Release | : 1999 |
Genre | : Computers |
ISBN | : 9780792358572 |
This is the second part of a two-volume handbook presenting a comprehensive overview of nonlinear dynamic system identification. The books include many aspects of nonlinear processes such as modelling, parameter estimation, structure search, nonlinearity and model validity tests.
Author | : Paulo Lopes dos Santos |
Publisher | : World Scientific |
Total Pages | : 402 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 9814355445 |
This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--
Author | : Rik Pintelon |
Publisher | : John Wiley & Sons |
Total Pages | : 644 |
Release | : 2004-04-05 |
Genre | : Science |
ISBN | : 0471660957 |
Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.
Author | : Robert Haber |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2013-09-14 |
Genre | : Science |
ISBN | : 9789401144810 |
The subject of the book is to present the modeling, parameter estimation and other aspects of the identification of nonlinear dynamic systems. The treatment is restricted to the input-output modeling approach. Because of the widespread usage of digital computers discrete time methods are preferred. Time domain parameter estimation methods are dealt with in detail, frequency domain and power spectrum procedures are described shortly. The theory is presented from the engineering point of view, and a large number of examples of case studies on the modeling and identifications of real processes illustrate the methods. Almost all processes are nonlinear if they are considered not merely in a small vicinity of the working point. To exploit industrial equipment as much as possible, mathematical models are needed which describe the global nonlinear behavior of the process. If the process is unknown, or if the describing equations are too complex, the structure and the parameters can be determined experimentally, which is the task of identification. The book is divided into seven chapters dealing with the following topics: 1. Nonlinear dynamic process models 2. Test signals for identification 3. Parameter estimation methods 4. Nonlinearity test methods 5. Structure identification 6. Model validity tests 7. Case studies on identification of real processes Chapter I summarizes the different model descriptions of nonlinear dynamical systems.
Author | : Karel J. Keesman |
Publisher | : Springer Science & Business Media |
Total Pages | : 334 |
Release | : 2011-05-16 |
Genre | : Technology & Engineering |
ISBN | : 0857295225 |
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.
Author | : Yiannis Boutalis |
Publisher | : Springer Science & Business |
Total Pages | : 316 |
Release | : 2014-04-23 |
Genre | : Technology & Engineering |
ISBN | : 3319063642 |
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
Author | : Steven L. Brunton |
Publisher | : Cambridge University Press |
Total Pages | : 615 |
Release | : 2022-05-05 |
Genre | : Computers |
ISBN | : 1009098489 |
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.