Nonlinear Integral Operators and Applications

Nonlinear Integral Operators and Applications
Author: Carlo Bardaro
Publisher: Walter de Gruyter
Total Pages: 214
Release: 2008-08-22
Genre: Mathematics
ISBN: 3110199270

In 1903 Fredholm published his famous paper on integral equations. Since then linear integral operators have become an important tool in many areas, including the theory of Fourier series and Fourier integrals, approximation theory and summability theory, and the theory of integral and differential equations. As regards the latter, applications were soon extended beyond linear operators. In approximation theory, however, applications were limited to linear operators mainly by the fact that the notion of singularity of an integral operator was closely connected with its linearity. This book represents the first attempt at a comprehensive treatment of approximation theory by means of nonlinear integral operators in function spaces. In particular, the fundamental notions of approximate identity for kernels of nonlinear operators and a general concept of modulus of continuity are developed in order to obtain consistent approximation results. Applications to nonlinear summability, nonlinear integral equations and nonlinear sampling theory are given. In particular, the study of nonlinear sampling operators is important since the results permit the reconstruction of several classes of signals. In a wider context, the material of this book represents a starting point for new areas of research in nonlinear analysis. For this reason the text is written in a style accessible not only to researchers but to advanced students as well.

Methods in Nonlinear Integral Equations

Methods in Nonlinear Integral Equations
Author: R Precup
Publisher: Springer Science & Business Media
Total Pages: 221
Release: 2013-03-09
Genre: Mathematics
ISBN: 9401599866

Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.

Partial Integral Operators and Integro-Differential Equations

Partial Integral Operators and Integro-Differential Equations
Author: Jurgen Appell
Publisher: CRC Press
Total Pages: 582
Release: 2000-02-29
Genre: Mathematics
ISBN: 9780824703967

A self-contained account of integro-differential equations of the Barbashin type and partial integral operators. It presents the basic theory of Barbashin equations in spaces of continuous or measurable functions, including existence, uniqueness, stability and perturbation results. The theory and applications of partial integral operators and linear and nonlinear equations is discussed. Topics range from abstract functional-analytic approaches to specific uses in continuum mechanics and engineering.

Nonlinear Integrals and Their Applications in Data Mining

Nonlinear Integrals and Their Applications in Data Mining
Author: Zhenyuan Wang
Publisher: World Scientific
Total Pages: 359
Release: 2010
Genre: Computers
ISBN: 9812814671

Regarding the set of all feature attributes in a given database as the universal set, this monograph discusses various nonadditive set functions that describe the interaction among the contributions from feature attributes towards a considered target attribute. Then, the relevant nonlinear integrals are investigated. These integrals can be applied as aggregation tools in information fusion and data mining, such as synthetic evaluation, nonlinear multiregressions, and nonlinear classifications. Some methods of fuzzification are also introduced for nonlinear integrals such that fuzzy data can be treated and fuzzy information is retrievable. The book is suitable as a text for graduate courses in mathematics, computer science, and information science. It is also useful to researchers in the relevant area.

Nonlinear Functional Analysis and Applications

Nonlinear Functional Analysis and Applications
Author: Louis B. Rall
Publisher:
Total Pages: 608
Release: 1971
Genre: Mathematics
ISBN:

This volume contains the proceedings of an advanced seminar conducted by the Mathematics Research Center at the University of Wisconsin, Madison, held on October 12-14, 1970. This collection of papers is intended to give a reasonably self-contained introduction to the basic concepts and techniques of this field, highlighted by a few significant applications.

Nonlinear Problems in Abstract Cones

Nonlinear Problems in Abstract Cones
Author: Dajun Guo
Publisher: Academic Press
Total Pages: 286
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483261905

Notes and Reports in Mathematics in Science and Engineering, Volume 5: Nonlinear Problems in Abstract Cones presents the investigation of nonlinear problems in abstract cones. This book uses the theory of cones coupled with the fixed point index to investigate positive fixed points of various classes of nonlinear operators. Organized into four chapters, this volume begins with an overview of the fundamental properties of cones coupled with the fixed point index. This text then employs the fixed point theory developed to discuss positive solutions of nonlinear integral equations. Other chapters consider several examples from integral and differential equations to illustrate the abstract results. This book discusses as well the fixed points of increasing and decreasing operators. The final chapter deals with the development of the theory of nonlinear differential equations in cones. This book is a valuable resource for graduate students in mathematics. Mathematicians and researchers will also find this book useful.

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications
Author: Hemen Dutta
Publisher: Springer Nature
Total Pages: 912
Release: 2019-08-23
Genre: Mathematics
ISBN: 3030152421

This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.

Bounded and Compact Integral Operators

Bounded and Compact Integral Operators
Author: David E. Edmunds
Publisher: Springer Science & Business Media
Total Pages: 655
Release: 2013-06-29
Genre: Mathematics
ISBN: 940159922X

The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness).

Advances in Summability and Approximation Theory

Advances in Summability and Approximation Theory
Author: S. A. Mohiuddine
Publisher: Springer
Total Pages: 248
Release: 2018-12-30
Genre: Mathematics
ISBN: 9811330778

This book discusses the Tauberian conditions under which convergence follows from statistical summability, various linear positive operators, Urysohn-type nonlinear Bernstein operators and also presents the use of Banach sequence spaces in the theory of infinite systems of differential equations. It also includes the generalization of linear positive operators in post-quantum calculus, which is one of the currently active areas of research in approximation theory. Presenting original papers by internationally recognized authors, the book is of interest to a wide range of mathematicians whose research areas include summability and approximation theory. One of the most active areas of research in summability theory is the concept of statistical convergence, which is a generalization of the familiar and widely investigated concept of convergence of real and complex sequences, and it has been used in Fourier analysis, probability theory, approximation theory and in other branches of mathematics. The theory of approximation deals with how functions can best be approximated with simpler functions. In the study of approximation of functions by linear positive operators, Bernstein polynomials play a highly significant role due to their simple and useful structure. And, during the last few decades, different types of research have been dedicated to improving the rate of convergence and decreasing the error of approximation.