Nonlinear Higher Order Differential And Integral Coupled Systems: Impulsive And Integral Equations On Bounded And Unbounded Domains

Nonlinear Higher Order Differential And Integral Coupled Systems: Impulsive And Integral Equations On Bounded And Unbounded Domains
Author: Feliz Manuel Minhos
Publisher: World Scientific
Total Pages: 243
Release: 2022-04-11
Genre: Mathematics
ISBN: 9811225141

Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'ski? fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Carathéodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful.

Nonlinear Higher Order Differential and Integral Coupled Systems

Nonlinear Higher Order Differential and Integral Coupled Systems
Author: Feliz Manuel Minhós
Publisher: World Scientific Publishing Company
Total Pages: 0
Release: 2022
Genre: Boundary value problems
ISBN: 9789811225123

"Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'skiĭ fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Carathéodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful"--

Stochastic Versus Deterministic Systems Of Iterative Processes

Stochastic Versus Deterministic Systems Of Iterative Processes
Author: Gangaram S Ladde
Publisher: World Scientific
Total Pages: 355
Release: 2024-04-22
Genre: Mathematics
ISBN: 981128749X

Continuous state dynamic models can be reformulated into discrete state processes. This process generates numerical schemes that lead theoretical iterative schemes. This type of method of stochastic modelling generates three basic problems. First, the fundamental properties of solution, namely, existence, uniqueness, measurability, continuous dependence on system parameters depend on mode of convergence. Second, the basic probabilistic and statistical properties, namely, the behavior of mean, variance, moments of solutions are described as qualitative/quantitative properties of solution process. We observe that the nature of probability distribution or density functions possess the qualitative/quantitative properties of iterative prosses as a special case. Finally, deterministic versus stochastic modelling of dynamic processes is to what extent the stochastic mathematical model differs from the corresponding deterministic model in the absence of random disturbances or fluctuations and uncertainties.Most literature in this subject was developed in the 1950s, and focused on the theory of systems of continuous and discrete-time deterministic; however, continuous-time and its approximation schemes of stochastic differential equations faced the solutions outlined above and made slow progress in developing problems. This monograph addresses these problems by presenting an account of stochastic versus deterministic issues in discrete state dynamic systems in a systematic and unified way.

Fractional Differential Equations

Fractional Differential Equations
Author: Anatoly Kochubei
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 528
Release: 2019-02-19
Genre: Mathematics
ISBN: 3110571668

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.