Nonlinear Channel Models And Their Simulations
Download Nonlinear Channel Models And Their Simulations full books in PDF, epub, and Kindle. Read online free Nonlinear Channel Models And Their Simulations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yecai Guo |
Publisher | : World Scientific |
Total Pages | : 449 |
Release | : 2022-06-27 |
Genre | : Technology & Engineering |
ISBN | : 9811249466 |
This comprehensive compendium highlights the research results of nonlinear channel modeling and simulation. Nonlinear channels include nonlinear satellite channels, nonlinear Volterra channels, molecular MIMO channels, etc.This volume involves wavelet theory, neural network, echo state network, machine learning, support vector machine, chaos calculation, principal component analysis, Markov chain model, correlation entropy, fuzzy theory and other theories for nonlinear channel modeling and equalization.The useful reference text enriches the theoretical system of nonlinear channel modeling and improving the means of establishing nonlinear channel model. It is suitable for engineering technicians, researchers and graduate students in information and communication engineering, and control science and engineering, intelligent science and technology.
Author | : Danilo Comminiello |
Publisher | : Butterworth-Heinemann |
Total Pages | : 390 |
Release | : 2018-06-11 |
Genre | : Technology & Engineering |
ISBN | : 0128129778 |
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
Author | : Bartlomiej Beliczynski |
Publisher | : Springer |
Total Pages | : 868 |
Release | : 2007-07-03 |
Genre | : Computers |
ISBN | : 3540716181 |
This two volume set constitutes the refereed proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2007, held in Warsaw, Poland, in April 2007. Coverage in the first volume includes evolutionary computation, genetic algorithms, and particle swarm optimization. The second volume covers neural networks, support vector machines, biomedical signal and image processing, biometrics, computer vision.
Author | : Han-Xiong Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 175 |
Release | : 2011-02-24 |
Genre | : Mathematics |
ISBN | : 940070741X |
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.
Author | : José Carlos Pedro |
Publisher | : Cambridge University Press |
Total Pages | : 361 |
Release | : 2018-06-14 |
Genre | : Technology & Engineering |
ISBN | : 1107140595 |
A practical, tutorial guide to the nonlinear methods and techniques needed to design real-world microwave circuits.
Author | : José Carlos Pedro |
Publisher | : Cambridge University Press |
Total Pages | : 361 |
Release | : 2018-06-14 |
Genre | : Technology & Engineering |
ISBN | : 1108570348 |
Discover the nonlinear methods and tools needed to design real-world microwave circuits with this tutorial guide. Balancing theoretical background with practical tools and applications, it covers everything from the basic properties of nonlinear systems such as gain compression, intermodulation and harmonic distortion, to nonlinear circuit analysis and simulation algorithms, and state-of-the-art equivalent circuit and behavioral modeling techniques. Model formulations discussed in detail include time-domain transistor compact models and frequency-domain linear and nonlinear scattering models. Learn how to apply these tools to designing real circuits with the help of a power amplifier design example, which covers all stages from active device model extraction and the selection of bias and terminations, through to performance verification. Realistic examples, illustrative insights and clearly conveyed mathematical formalism make this an essential learning aid for both professionals working in microwave and RF engineering and graduate students looking for a hands-on guide to microwave circuit design.
Author | : Gunjan Mukherjee |
Publisher | : CRC Press |
Total Pages | : 279 |
Release | : 2024-03-28 |
Genre | : Mathematics |
ISBN | : 1040001343 |
Advances on Mathematical Modeling and Optimization with Its Applications discusses optimization, equality, and inequality constraints and their application in the versatile optimizing domain. It further covers non-linear optimization methods such as global optimization, and gradient-based non-linear optimization, and their applications. Discusses important topics including multi-component differential equations, geometric partial differential equations, and computational neural systems Covers linear integer programming and network design problems, along with an application of the mixed integer problems Discusses constrained and unconstrained optimization, equality, and inequality constraints, and their application in the versatile optimizing domain Elucidates the application of statistical models, probability models, and transfer learning concepts Showcases the importance of multi-attribute decision modeling in the domain of image processing and soft computing The text is primarily for senior undergraduate and graduate students, and academic researchers in the fields of mathematics, statistics, and computer science.
Author | : K.C. Raveendranathan |
Publisher | : CRC Press |
Total Pages | : 238 |
Release | : 2017-11-22 |
Genre | : Computers |
ISBN | : 135183178X |
Equalizers are present in all forms of communication systems. Neuro-Fuzzy Equalizers for Mobile Cellular Channels details the modeling of a mobile broadband communication channel and designing of a neuro-fuzzy adaptive equalizer for it. This book focuses on the concept of the simulation of wireless channel equalizers using the adaptive-network-based fuzzy inference system (ANFIS). The book highlights a study of currently existing equalizers for wireless channels. It discusses several techniques for channel equalization, including the type-2 fuzzy adaptive filter (type-2 FAF), compensatory neuro-fuzzy filter (CNFF), and radial basis function (RBF) neural network. Neuro-Fuzzy Equalizers for Mobile Cellular Channels starts with a brief introduction to channel equalizers, and the nature of mobile cellular channels with regard to the frequency reuse and the resulting CCI. It considers the many channel models available for mobile cellular channels, establishes the mobile indoor channel as a Rayleigh fading channel, presents the channel equalization problem, and focuses on various equalizers for mobile cellular channels. The book discusses conventional equalizers like LE and DFE using a simple LMS algorithm and transversal equalizers. It also covers channel equalization with neural networks and fuzzy logic, and classifies various equalizers. This being a fairly new branch of study, the book considers in detail the concept of fuzzy logic controllers in noise cancellation problems and provides the fundamental concepts of neuro-fuzzy. The final chapter offers a recap and explores venues for further research. This book also establishes a common mathematical framework of the equalizers using the RBF model and develops a mathematical model for ultra-wide band (UWB) channels using the channel co-variance matrix (CCM). Introduces the novel concept of the application of adaptive-network-based fuzzy inference system (ANFIS) in the design of wireless channel equalizers Provides model ultra-wide band (UWB) channels using channel co-variance matrix Offers a formulation of a unified radial basis function (RBF) framework for ANFIS-based and fuzzy adaptive filter (FAF) Type II, as well as compensatory neuro-fuzzy equalizers Includes extensive use of MATLAB® as the simulation tool in all the above cases
Author | : Xizheng Ke |
Publisher | : Springer Nature |
Total Pages | : 1881 |
Release | : |
Genre | : |
ISBN | : 9819715229 |
Author | : Xin-She Yang |
Publisher | : Academic Press |
Total Pages | : 444 |
Release | : 2020-04-09 |
Genre | : Technology & Engineering |
ISBN | : 0128226099 |
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence. - Introduces nature-inspired algorithms and their fundamentals, including: particle swarm optimization, bat algorithm, cuckoo search, firefly algorithm, flower pollination algorithm, differential evolution and genetic algorithms as well as multi-objective optimization algorithms and others - Provides a theoretical foundation and analyses of algorithms, including: statistical theory and Markov chain theory on the convergence and stability of algorithms, dynamical system theory, benchmarking of optimization, no-free-lunch theorems, and a generalized mathematical framework - Includes a diversity of case studies of real-world applications: feature selection, clustering and classification, tuning of restricted Boltzmann machines, travelling salesman problem, classification of white blood cells, music generation by artificial intelligence, swarm robots, neural networks, engineering designs and others