Noncommutative Integration And Operator Theory
Download Noncommutative Integration And Operator Theory full books in PDF, epub, and Kindle. Read online free Noncommutative Integration And Operator Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Peter G. Dodds |
Publisher | : Springer Nature |
Total Pages | : 583 |
Release | : 2024-01-19 |
Genre | : Mathematics |
ISBN | : 303149654X |
The purpose of this monograph is to provide a systematic account of the theory of noncommutative integration in semi-finite von Neumann algebras. It is designed to serve as an introductory graduate level text as well as a basic reference for more established mathematicians with interests in the continually expanding areas of noncommutative analysis and probability. Its origins lie in two apparently distinct areas of mathematical analysis: the theory of operator ideals going back to von Neumann and Schatten and the general theory of rearrangement invariant Banach lattices of measurable functions which has its roots in many areas of classical analysis related to the well-known Lp-spaces. A principal aim, therefore, is to present a general theory which contains each of these motivating areas as special cases.
Author | : Alain Connes |
Publisher | : Springer |
Total Pages | : 364 |
Release | : 2003-12-15 |
Genre | : Mathematics |
ISBN | : 3540397027 |
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Author | : Masamichi Takesaki |
Publisher | : Springer Science & Business Media |
Total Pages | : 424 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461261880 |
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Author | : Daniel Alpay |
Publisher | : Birkhäuser |
Total Pages | : 285 |
Release | : 2016-06-30 |
Genre | : Mathematics |
ISBN | : 3319291165 |
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
Author | : I.E. Segal |
Publisher | : Springer Science & Business Media |
Total Pages | : 387 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642666930 |
TO THE SECOND EDITION Since publication of the First Edition several excellent treatments of advanced topics in analysis have appeared. However, the concentration and penetration of these treatises naturally require much in the way of technical preliminaries and new terminology and notation. There consequently remains a need for an introduction to some of these topics which would mesh with the material of the First Edition. Such an introduction could serve to exemplify the material further, while using it to shorten and simplify its presentation. It seemed particularly important as well as practical to treat briefly but cogently some of the central parts of operator algebra and higher operator theory, as these are presently represented in book form only with a degree of specialization rather beyond the immediate needs or interests of many readers. Semigroup and perturbation theory provide connections with the theory of partial differential equations. C*-algebras are important in har monic analysis and the mathematical foundations of quantum mechanics. W*-algebras (or von Neumann rings) provide an approach to the theory of multiplicity of the spectrum and some simple but key elements of the gram mar of analysis, of use in group representation theory and elsewhere. The v vi Preface to the Second Edition theory of the trace for operators on Hilbert space is both important in itself and a natural extension of earlier integration-theoretic ideas.
Author | : Masamichi Takesaki |
Publisher | : Springer Science & Business Media |
Total Pages | : 552 |
Release | : 2002-11-01 |
Genre | : Mathematics |
ISBN | : 9783540429142 |
Together with Theory of Operator Algebras I and III, this book presents the theory of von Neumann algebras and non-commutative integration focusing on the group of automorphisms and the structure analysis. From the reviews: "These books can be warmly recommended to every graduate student who wants to become acquainted with this exciting branch of mathematics. Furthermore, they should be on the bookshelf of every researcher of the area." --ACTA SCIENTIARUM MATHEMATICARUM
Author | : Steven Lord |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 304 |
Release | : 2021-07-19 |
Genre | : Mathematics |
ISBN | : 3110392313 |
This book is the second edition of the first complete study and monograph dedicated to singular traces. The text offers, due to the contributions of Albrecht Pietsch and Nigel Kalton, a complete theory of traces and their spectral properties on ideals of compact operators on a separable Hilbert space. The second edition has been updated on the fundamental approach provided by Albrecht Pietsch. For mathematical physicists and other users of Connes’ noncommutative geometry the text offers a complete reference to traces on weak trace class operators, including Dixmier traces and associated formulas involving residues of spectral zeta functions and asymptotics of partition functions.
Author | : J. J. Grobler |
Publisher | : Springer Science & Business Media |
Total Pages | : 301 |
Release | : 2009-12-24 |
Genre | : Mathematics |
ISBN | : 3034601743 |
This volume contains the proceedings of the eighteenth International Workshop on Operator Theory and Applications (IWOTA), hosted by the Unit for Business Mathematics and Informatics of North-West University, Potchefstroom, South Africa from July 3 to 6, 2007. The conference (as well as these proceedings) was dedicated to Professors Joseph A. Ball and Marinus M. Kaashoek on the occasion of their 60th and 70th birthdays, respectively. This conference had a particular focus on Von Neumann algebras at the interface of operator theory with functional analysis and on applications of operator theory to differential equations.
Author | : I. Cuculescu |
Publisher | : Springer Science & Business Media |
Total Pages | : 367 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 9401583749 |
The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras". This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas".
Author | : Anna Kamińska |
Publisher | : American Mathematical Soc. |
Total Pages | : 386 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821832344 |
This volume contains proceedings of the conference on Trends in Banach Spaces and Operator Theory, which was devoted to recent advances in theories of Banach spaces and linear operators. Included in the volume are 25 papers, some of which are expository, while others present new results. The articles address the following topics: history of the famous James' theorem on reflexivity, projective tensor products, construction of noncommutative $L p$-spaces via interpolation, Banach spaces with abundance of nontrivial operators, Banach spaces with small spaces of operators, convex geometry of Coxeter-invariant polyhedra, uniqueness of unconditional bases in quasi-Banach spaces, dynamics of cohyponormal operators, and Fourier algebras for locally compact groupoids. The book is suitable for graduate students and research mathematicians interested in Banach spaces and operator theory and their applications.