Non-Self-Adjoint Boundary Eigenvalue Problems

Non-Self-Adjoint Boundary Eigenvalue Problems
Author: R. Mennicken
Publisher: Elsevier
Total Pages: 519
Release: 2003-06-26
Genre: Mathematics
ISBN: 0080537731

This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalentto a first order system, the main techniques are developed for systems. Asymptotic fundamentalsystems are derived for a large class of systems of differential equations. Together with boundaryconditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.The contour integral method and estimates of the resolvent are used to prove expansion theorems.For Stone regular problems, not all functions are expandable, and again relatively easy verifiableconditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such asthe Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.Key features:• Expansion Theorems for Ordinary Differential Equations • Discusses Applications to Problems from Physics and Engineering • Thorough Investigation of Asymptotic Fundamental Matrices and Systems • Provides a Comprehensive Treatment • Uses the Contour Integral Method • Represents the Problems as Bounded Operators • Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions

Nonconservative Stability Problems of Modern Physics

Nonconservative Stability Problems of Modern Physics
Author: Oleg N. Kirillov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 548
Release: 2021-03-08
Genre: Science
ISBN: 3110655403

This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications
Author: Manfred Möller
Publisher: Birkhäuser
Total Pages: 418
Release: 2015-06-11
Genre: Mathematics
ISBN: 3319170708

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader’s background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.

Spectral Analysis of Differential Operators

Spectral Analysis of Differential Operators
Author: Fedor S. Rofe-Beketov
Publisher: World Scientific
Total Pages: 463
Release: 2005
Genre: Science
ISBN: 9812562761

- Detailed bibliographical comments and some open questions are given after each chapter - Indicates connections between the content of the book and many other topics in mathematics and physics - Open questions are formulated and commented with the intention to attract attention of young mathematicians

High-Precision Methods in Eigenvalue Problems and Their Applications

High-Precision Methods in Eigenvalue Problems and Their Applications
Author: Leonid D. Akulenko
Publisher: CRC Press
Total Pages: 260
Release: 2004-10-15
Genre: Science
ISBN: 113439022X

This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high

Novel Mathematics Inspired by Industrial Challenges

Novel Mathematics Inspired by Industrial Challenges
Author: Michael Günther
Publisher: Springer Nature
Total Pages: 348
Release: 2022-03-30
Genre: Mathematics
ISBN: 3030961737

This contributed volume convenes a rich selection of works with a focus on innovative mathematical methods with applications in real-world, industrial problems. Studies included in this book are all motivated by a relevant industrial challenge, and demonstrate that mathematics for industry can be extremely rewarding, leading to new mathematical methods and sometimes even to entirely new fields within mathematics. The book is organized into two parts: Computational Sciences and Engineering, and Data Analysis and Finance. In every chapter, readers will find a brief description of why such work fits into this volume; an explanation on which industrial challenges have been instrumental for their inspiration; and which methods have been developed as a result. All these contribute to a greater unity of the text, benefiting not only practitioners and professionals seeking information on novel techniques but also graduate students in applied mathematics, engineering, and related fields.

Functional Inequalities: New Perspectives and New Applications

Functional Inequalities: New Perspectives and New Applications
Author: Nassif Ghoussoub
Publisher: American Mathematical Soc.
Total Pages: 331
Release: 2013-04-09
Genre: Mathematics
ISBN: 0821891529

"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
Total Pages: 743
Release: 2013-12-01
Genre: Mathematics
ISBN: 9400903650

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Ordinary Differential Equations and Integral Equations

Ordinary Differential Equations and Integral Equations
Author: C.T.H. Baker
Publisher: Elsevier
Total Pages: 559
Release: 2001-06-20
Genre: Mathematics
ISBN: 0080929559

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of