New Spaces In Mathematics
Download New Spaces In Mathematics full books in PDF, epub, and Kindle. Read online free New Spaces In Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mathieu Anel |
Publisher | : Cambridge University Press |
Total Pages | : 602 |
Release | : 2021-04-01 |
Genre | : Mathematics |
ISBN | : 1108848214 |
After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincaré in 2015. The chapters in this volume cover a broad range of topics in mathematics, including diffeologies, synthetic differential geometry, microlocal analysis, topos theory, infinity-groupoids, homotopy type theory, category-theoretic methods in geometry, stacks, derived geometry, and noncommutative geometry. It is addressed primarily to mathematicians and mathematical physicists, but also to historians and philosophers of these disciplines.
Author | : Mathieu Anel |
Publisher | : |
Total Pages | : 900 |
Release | : 2020-11-30 |
Genre | : Mathematics |
ISBN | : 9781108854368 |
Author | : Mathieu Anel |
Publisher | : Cambridge University Press |
Total Pages | : 438 |
Release | : 2021-04-01 |
Genre | : Mathematics |
ISBN | : 1108848206 |
After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincaré in 2015. This volume covers a broad range of topics in mathematical physics, including noncommutative geometry, supergeometry, derived symplectic geometry, higher geometric quantization, intuitionistic quantum logic, problems with the continuum description of spacetime, twistor theory, loop quantum gravity, and geometry in string theory. It is addressed primarily to mathematical physicists and mathematicians, but also to historians and philosophers of these disciplines.
Author | : Bernice Kastner |
Publisher | : Courier Corporation |
Total Pages | : 194 |
Release | : 2013-10-17 |
Genre | : Science |
ISBN | : 0486320839 |
Created by NASA for high school students interested in space science, this collection of worked problems covers a broad range of subjects, including mathematical aspects of NASA missions, computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus. In addition to enhancing mathematical knowledge and skills, these problems promote an appreciation of aerospace technology and offer valuable insights into the practical uses of secondary school mathematics by professional scientists and engineers. Geared toward high school students and teachers, this volume also serves as a fine review for undergraduate science and engineering majors. Numerous figures illuminate the text, and an appendix explores the advanced topic of gravitational forces and the conic section trajectories.
Author | : Tim Maudlin |
Publisher | : |
Total Pages | : 374 |
Release | : 2014-02 |
Genre | : Mathematics |
ISBN | : 0198701306 |
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Author | : Garret Sobczyk |
Publisher | : Springer Science & Business Media |
Total Pages | : 373 |
Release | : 2012-10-26 |
Genre | : Mathematics |
ISBN | : 0817683852 |
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Author | : Max Dickmann |
Publisher | : Cambridge University Press |
Total Pages | : 652 |
Release | : 2019-03-21 |
Genre | : Mathematics |
ISBN | : 1107146720 |
Offers a comprehensive presentation of spectral spaces focussing on their topology and close connections with algebra, ordered structures, and logic.
Author | : Tom L. Lindstrøm |
Publisher | : American Mathematical Soc. |
Total Pages | : 384 |
Release | : 2017-11-28 |
Genre | : Mathematics |
ISBN | : 1470440628 |
Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.
Author | : Melvin Hausner |
Publisher | : Courier Dover Publications |
Total Pages | : 417 |
Release | : 2018-10-17 |
Genre | : Mathematics |
ISBN | : 0486835391 |
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Author | : Richard A. Alo |
Publisher | : Cambridge University Press |
Total Pages | : 0 |
Release | : 2009-01-11 |
Genre | : Mathematics |
ISBN | : 9780521095303 |
This text bridges the gap existing in the field of set theoretical topology between the introductory texts and the more specialised monographs. The authors review fit developments in general topology and discuss important new areas of research and the importance of defining a methodology applicable to this active field of mathematics. The concept of normal cover and related ideas is considered in detail, as are the characterisations of normal spaces, collectionwise normal spaces and their interrelationships with paracompact spaces (and other weaker forms of compactness). Various methods of embedding subspaces are studied, before considering newer concepts such as M-spaces and their relationships with established ideas. These ideas are applied to give new results pertaining to the extension of continuous vector-valued functions. Wallman-Frink compactifications and realcompactifications are also studied to assist in unifying the ideas through the use of the more general L-filter.