Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization
Author: Kaisa Miettinen
Publisher: Springer Science & Business Media
Total Pages: 304
Release: 2012-12-06
Genre: Business & Economics
ISBN: 1461555639

Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.

Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization
Author: Claus Hillermeier
Publisher: Birkhäuser
Total Pages: 139
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034882807

Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization. The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods.

Non-Convex Multi-Objective Optimization

Non-Convex Multi-Objective Optimization
Author: Panos M. Pardalos
Publisher: Springer
Total Pages: 196
Release: 2017-07-27
Genre: Mathematics
ISBN: 3319610074

Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.

Multiobjective Optimization

Multiobjective Optimization
Author: Jürgen Branke
Publisher: Springer
Total Pages: 481
Release: 2008-10-18
Genre: Computers
ISBN: 3540889086

Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.

Adaptive Scalarization Methods in Multiobjective Optimization

Adaptive Scalarization Methods in Multiobjective Optimization
Author: Gabriele Eichfelder
Publisher: Springer Science & Business Media
Total Pages: 247
Release: 2008-05-06
Genre: Computers
ISBN: 3540791590

This book presents adaptive solution methods for multiobjective optimization problems based on parameter dependent scalarization approaches. Readers will benefit from the new adaptive methods and ideas for solving multiobjective optimization.

Evolutionary Large-Scale Multi-Objective Optimization and Applications

Evolutionary Large-Scale Multi-Objective Optimization and Applications
Author: Xingyi Zhang
Publisher: John Wiley & Sons
Total Pages: 358
Release: 2024-09-11
Genre: Technology & Engineering
ISBN: 1394178417

Tackle the most challenging problems in science and engineering with these cutting-edge algorithms Multi-objective optimization problems (MOPs) are those in which more than one objective needs to be optimized simultaneously. As a ubiquitous component of research and engineering projects, these problems are notoriously challenging. In recent years, evolutionary algorithms (EAs) have shown significant promise in their ability to solve MOPs, but challenges remain at the level of large-scale multi-objective optimization problems (LSMOPs), where the number of variables increases and the optimized solution is correspondingly harder to reach. Evolutionary Large-Scale Multi-Objective Optimization and Applications constitutes a systematic overview of EAs and their capacity to tackle LSMOPs. It offers an introduction to both the problem class and the algorithms before delving into some of the cutting-edge algorithms which have been specifically adapted to solving LSMOPs. Deeply engaged with specific applications and alert to the latest developments in the field, it’s a must-read for students and researchers facing these famously complex but crucial optimization problems. The book’s readers will also find: Analysis of multi-optimization problems in fields such as machine learning, network science, vehicle routing, and more Discussion of benchmark problems and performance indicators for LSMOPs Presentation of a new taxonomy of algorithms in the field Evolutionary Large-Scale Multi-Objective Optimization and Applications is ideal for advanced students, researchers, and scientists and engineers facing complex optimization problems.

Multiobjective Problem Solving from Nature

Multiobjective Problem Solving from Nature
Author: Joshua Knowles
Publisher: Springer Science & Business Media
Total Pages: 413
Release: 2008-01-28
Genre: Computers
ISBN: 3540729631

This text examines how multiobjective evolutionary algorithms and related techniques can be used to solve problems, particularly in the disciplines of science and engineering. Contributions by leading researchers show how the concept of multiobjective optimization can be used to reformulate and resolve problems in areas such as constrained optimization, co-evolution, classification, inverse modeling, and design.