Neutrosophic Triplet V Generalized Metric Space
Download Neutrosophic Triplet V Generalized Metric Space full books in PDF, epub, and Kindle. Read online free Neutrosophic Triplet V Generalized Metric Space ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Memet Şahin |
Publisher | : Infinite Study |
Total Pages | : 20 |
Release | : |
Genre | : Mathematics |
ISBN | : |
In this chapter, study the notion of neutrosophic triplet partial v-generalized metric space. Then, we give some definitions and examples for neutrosophic triplet partial v-generalized metric space and obtain some properties and prove these properties. Furthermore, we show that neutrosophic triplet partial v-generalized metric space is different from neutrosophic triplet v-generalized metric space and neutrosophic triplet partial metric space.
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 199 |
Release | : 2019 |
Genre | : Mathematics |
ISBN | : 1599735954 |
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
Author | : Abdullah Kargın |
Publisher | : Infinite Study |
Total Pages | : 16 |
Release | : 2020-12-01 |
Genre | : Mathematics |
ISBN | : |
Neutrosophic triplet theory has an important place in neutrosophic theory. Since the neutrosophic triplet set (Nts), which have the feature of having multiple unit elements, have different units than the classical unit, they have more features than the classical set. Also, Banach spaces are complete normed vector space defined by real and complex numbers that are studied historically in functional analysis. Thus, normed space and Banach space have an important place in functional analysis. In this article, neutrosophic triplet m-Banach spaces (NtmBs) are firstly obtained. Then, some definitions and examples are given for NtmBs. Based on these definitions, new theorems are given and proved. In addition, it is shown that NtmBs is different from neutrosophic triplet Banach space (NtBs). Furthermore, it is shown that relationship between NtmBs and NtBs. So, we added a new structure to functional analysis and neutrosophic triplet theory.
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 269 |
Release | : 2022-08-01 |
Genre | : Mathematics |
ISBN | : |
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 353 |
Release | : |
Genre | : Mathematics |
ISBN | : |
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra, Neutrosophic Triplet Partial Bipolar Metric Spaces, The Neutrosophic Triplet of BI-algebras.
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 306 |
Release | : |
Genre | : Mathematics |
ISBN | : |
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 262 |
Release | : |
Genre | : Mathematics |
ISBN | : |
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Author | : Florentin Smarandache |
Publisher | : MDPI |
Total Pages | : 714 |
Release | : 2019-11-27 |
Genre | : Technology & Engineering |
ISBN | : 3039219383 |
This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 293 |
Release | : |
Genre | : Mathematics |
ISBN | : |
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 293 |
Release | : |
Genre | : Mathematics |
ISBN | : |
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.