Neural Nets Wirn Vietri 97
Download Neural Nets Wirn Vietri 97 full books in PDF, epub, and Kindle. Read online free Neural Nets Wirn Vietri 97 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Maria Marinaro |
Publisher | : Springer Science & Business Media |
Total Pages | : 338 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447115201 |
This volume contains selected papers from WIRN VIETRI-97, the 9th Italian Workshop on Neural Nets, held Vietri sul Mare, Salerno, Italy, from 22-24 May 1997. The papers cover a variety of topics related to neural networks, including pattern recognition, signal processing, theoretical models, applications in science and industry, virtual reality, fuzzy systems, and software algorithms. = By providing the reader with a comprehensive overview of recent research work in this area, the volume makes an invaluab le contribution to the Perspectives in Neural Computing Series. Neural Nets - WIRN VIETRI-97 will provide invaluable reading material for anyone who needs to keep up to date with the latest developments in neural networks and related areas. It will be of particular interest to academic and industrial researchers, and postgraduate and graduate students.
Author | : Maria Marinaro |
Publisher | : Springer Science & Business Media |
Total Pages | : 389 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447108116 |
From its early beginnings in the fifties and sixties, the field of neural networks has been steadily developing to become one of the most interdisciplinary areas of research within computer science. This volume contains selected papers from WIRN Vietri-98, the 10th Italian Workshop on Neural Nets, 21-23 May 1998, Vietri sul Mare, Salerno, Italy. This annual event, sponsored amongst others by the IEEE Neural Network Council and the INNS/SIG Italy, brings together the best of research from all over the world. The papers cover a range of key topics within neural networks, including pattern recognition, signal processing, hybrid systems, mathematical models, hardware and software design, and fuzzy techniques. It also includes two review talks on a Morpho-Functional Model to Describe Variability Found at Hippocampal Synapses and Neural Networks and Speech Processing. By providing the reader with a comprehensive overview of recent research in this area, the volume makes a valuable contribution to the Perspectives in Neural Computing Series.
Author | : Maria Marinaro |
Publisher | : Springer Science & Business Media |
Total Pages | : 429 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447108779 |
From its early beginnings in the fifties and sixties, the field of neural networks has been steadily developing to become one of the most interdisciplinary areas of research within computer science. This volume contains a selection of papers from WIRN Vietri-99, the 11th Italian Workshop on Neural Nets. This annual event, sponsored, amongst others, by the IEEE Neural Networks Council and the INNS/SIG Italy, brings together the best of research from all over the world. The papers cover a range of topics within neural networks, including pattern recognition, signal and image processing, mathematical models, neuro-fuzzy models and economics applications.
Author | : Roberto Tagliaferri |
Publisher | : Springer Science & Business Media |
Total Pages | : 336 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447102193 |
This volume contains the proceedings of the 12th Italian Workshop on Neural Nets WIRN VIETRI-Ol, jointly organized by the International Institute for Advanced Scientific Studies "Eduardo R. Caianiello" (IIASS), the Societa Italiana Reti Neuroniche (SIREN), the IEEE NNC Italian RIG and the Italian SIG of the INNS. Following the tradition of previous years, we invited three foreign scientists to the workshop, Dr. G. Indiveri and Professors A. Roy and R. Sun, who respectively presented the lectures "Computation in Neuromorphic Analog VLSI Systems", "On Connectionism and Rule Extraction", "Beyond Simple Rule Extraction: Acquiring Planning Knowledge from Neural Networks" (the last two papers being part of the special session mentioned below). In addition, a review talk was presented, dealing with a very up-to-date topic: "NeuroJuzzy Approximator based on Mamdani's Model". A large part of the book contains original contributions approved by referees as oral or poster presentations, which have been assembled for reading convenience into three sections: Architectures and Algorithms, Image and Signal Processing, and Applications. The last part of the books contains the papers of the special Session "From Synapses to Rules". Our thanks go to Prof. B. Apolloni, who organized this section. Furthermore, two sections are dedicated to the memory of two great scientists who were friends in life, Professors Mark Aizerman and Eduardo R. Caianiello. The editors would like to thank the invited speakers, the review lecturers and all the contributors whose highly qualified papers helped with the success of the workshop.
Author | : Amanda J.C. Sharkey |
Publisher | : Springer Science & Business Media |
Total Pages | : 300 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447107934 |
This volume, written by leading researchers, presents methods of combining neural nets to improve their performance. The techniques include ensemble-based approaches, where a variety of methods are used to create a set of different nets trained on the same task, and modular approaches, where a task is decomposed into simpler problems. The techniques are also accompanied by an evaluation of their relative effectiveness and their application to a variety of problems.
Author | : Paulo J.G. Lisboa |
Publisher | : Springer Science & Business Media |
Total Pages | : 290 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447104870 |
Following the intense research activIties of the last decade, artificial neural networks have emerged as one of the most promising new technologies for improving the quality of healthcare. Many successful applications of neural networks to biomedical problems have been reported which demonstrate, convincingly, the distinct benefits of neural networks, although many ofthese have only undergone a limited clinical evaluation. Healthcare providers and developers alike have discovered that medicine and healthcare are fertile areas for neural networks: the problems here require expertise and often involve non-trivial pattern recognition tasks - there are genuine difficulties with conventional methods, and data can be plentiful. The intense research activities in medical neural networks, and allied areas of artificial intelligence, have led to a substantial body of knowledge and the introduction of some neural systems into clinical practice. An aim of this book is to provide a coherent framework for some of the most experienced users and developers of medical neural networks in the world to share their knowledge and expertise with readers.
Author | : Dirk Husmeier |
Publisher | : Springer Science & Business Media |
Total Pages | : 280 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447108477 |
Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.
Author | : John A: Bullinaria |
Publisher | : Springer Science & Business Media |
Total Pages | : 350 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447115465 |
This volume collects together refereed versions of twenty-five papers presented at the 4th Neural Computation and Psychology Workshop, held at University College London in April 1997. The "NCPW" workshop series is now well established as a lively forum which brings together researchers from such diverse disciplines as artificial intelligence, mathematics, cognitive science, computer science, neurobiology, philosophy and psychology to discuss their work on connectionist modelling in psychology. The general theme of this fourth workshop in the series was "Connectionist Repre sentations", a topic which not only attracted participants from all these fields, but from allover the world as well. From the point of view of the conference organisers focusing on representational issues had the advantage that it immediately involved researchers from all branches of neural computation. Being so central both to psychology and to connectionist modelling, it is one area about which everyone in the field has their own strong views, and the diversity and quality of the presentations and, just as importantly, the discussion which followed them, certainly attested to this.
Author | : Mark Girolami |
Publisher | : Springer Science & Business Media |
Total Pages | : 276 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447108256 |
The conception of fresh ideas and the development of new techniques for Blind Source Separation and Independent Component Analysis have been rapid in recent years. It is also encouraging, from the perspective of the many scientists involved in this fascinating area of research, to witness the growing list of successful applications of these methods to a diverse range of practical everyday problems. This growth has been due, in part, to the number of promising young and enthusiastic researchers who have committed their efforts to expanding the current body of knowledge within this field of research. The author of this book is among one of their number. I trust that the present book by Dr. Mark Girolami will provide a rapid and effective means of communicating some of these new ideas to a wide international audience and that in turn this will expand further the growth of knowledge. In my opinion this book makes an important contribution to the theory of Independent Component Analysis and Blind Source Separation. This opens a range of exciting methods, techniques and algorithms for applied researchers and practitioner engineers, especially from the perspective of artificial neural networks and information theory. It has been interesting to see how rapidly the scientific literature in this area has grown.
Author | : H. Malmgren |
Publisher | : Springer Science & Business Media |
Total Pages | : 339 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447105133 |
This book contains the proceedings of the conference ANNIMAB-l, held 13-16 May 2000 in Goteborg, Sweden. The conference was organized by the Society for Artificial Neural Networks in Medicine and Biology (ANNIMAB-S), which was established to promote research within a new and genuinely cross-disciplinary field. Forty-two contributions were accepted for presentation; in addition to these, S invited papers are also included. Research within medicine and biology has often been characterised by application of statistical methods for evaluating domain specific data. The growing interest in Artificial Neural Networks has not only introduced new methods for data analysis, but also opened up for development of new models of biological and ecological systems. The ANNIMAB-l conference is focusing on some of the many uses of artificial neural networks with relevance for medicine and biology, specifically: • Medical applications of artificial neural networks: for better diagnoses and outcome predictions from clinical and laboratory data, in the processing of ECG and EEG signals, in medical image analysis, etc. More than half of the contributions address such clinically oriented issues. • Uses of ANNs in biology outside clinical medicine: for example, in models of ecology and evolution, for data analysis in molecular biology, and (of course) in models of animal and human nervous systems and their capabilities. • Theoretical aspects: recent developments in learning algorithms, ANNs in relation to expert systems and to traditional statistical procedures, hybrid systems and integrative approaches.