Network Architecture For Object Recognition
Download Network Architecture For Object Recognition full books in PDF, epub, and Kindle. Read online free Network Architecture For Object Recognition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Deep Learning for Computer Vision
Author | : Jason Brownlee |
Publisher | : Machine Learning Mastery |
Total Pages | : 564 |
Release | : 2019-04-04 |
Genre | : Computers |
ISBN | : |
Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.
Neural Network Projects with Python
Author | : James Loy |
Publisher | : Packt Publishing Ltd |
Total Pages | : 301 |
Release | : 2019-02-28 |
Genre | : Computers |
ISBN | : 1789133319 |
Build your Machine Learning portfolio by creating 6 cutting-edge Artificial Intelligence projects using neural networks in Python Key FeaturesDiscover neural network architectures (like CNN and LSTM) that are driving recent advancements in AIBuild expert neural networks in Python using popular libraries such as KerasIncludes projects such as object detection, face identification, sentiment analysis, and moreBook Description Neural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them. It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch. By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio. What you will learnLearn various neural network architectures and its advancements in AIMaster deep learning in Python by building and training neural networkMaster neural networks for regression and classificationDiscover convolutional neural networks for image recognitionLearn sentiment analysis on textual data using Long Short-Term MemoryBuild and train a highly accurate facial recognition security systemWho this book is for This book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.
Practical Machine Learning for Computer Vision
Author | : Valliappa Lakshmanan |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 481 |
Release | : 2021-07-21 |
Genre | : Computers |
ISBN | : 1098102339 |
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Artificial Neural Networks - ICANN 96
Author | : Christoph von der Malsburg |
Publisher | : Springer Science & Business Media |
Total Pages | : 956 |
Release | : 1996-07-10 |
Genre | : Computers |
ISBN | : 9783540615101 |
This book constitutes the refereed proceedings of the sixth International Conference on Artificial Neural Networks - ICANN 96, held in Bochum, Germany in July 1996. The 145 papers included were carefully selected from numerous submissions on the basis of at least three reviews; also included are abstracts of the six invited plenary talks. All in all, the set of papers presented reflects the state of the art in the field of ANNs. Among the topics and areas covered are a broad spectrum of theoretical aspects, applications in various fields, sensory processing, cognitive science and AI, implementations, and neurobiology.
Shape, Contour and Grouping in Computer Vision
Author | : David A. Forsyth |
Publisher | : Springer Science & Business Media |
Total Pages | : 340 |
Release | : 1999-11-03 |
Genre | : Computers |
ISBN | : 3540667229 |
Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.
Computer Vision -- ECCV 2014
Author | : David Fleet |
Publisher | : Springer |
Total Pages | : 632 |
Release | : 2014-09-22 |
Genre | : Computers |
ISBN | : 9783319105833 |
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.
Object Recognition
Author | : Tam Phuong Cao |
Publisher | : BoD – Books on Demand |
Total Pages | : 363 |
Release | : 2011-04-01 |
Genre | : Computers |
ISBN | : 9533072229 |
Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs.
Advanced Computational Intelligence for Object Detection, Feature Extraction and Recognition in Smart Sensor Environments
Author | : Marcin Woźniak |
Publisher | : MDPI |
Total Pages | : 454 |
Release | : 2021-09-01 |
Genre | : Technology & Engineering |
ISBN | : 3036512683 |
Recent years have seen a vast development in various methodologies for object detection and feature extraction and recognition, both in theory and in practice. When processing images, videos, or other types of multimedia, one needs efficient solutions to perform fast and reliable processing. Computational intelligence is used for medical screening where the detection of disease symptoms is carried out, in prevention monitoring to detect suspicious behavior, in agriculture systems to help with growing plants and animal breeding, in transportation systems for the control of incoming and outgoing transportation, for unmanned vehicles to detect obstacles and avoid collisions, in optics and materials for the detection of surface damage, etc. In many cases, we use developed techniques which help us to recognize some special features. In the context of this innovative research on computational intelligence, the Special Issue “Advanced Computational Intelligence for Object Detection, Feature Extraction and Recognition in Smart Sensor Environments” present an excellent opportunity for the dissemination of recent results and achievements for further innovations and development. It is my pleasure to present this collection of excellent contributions to the research community. - Prof. Marcin Woźniak, Silesian University of Technology, Poland –
2D Object Detection and Recognition
Author | : Yali Amit |
Publisher | : MIT Press |
Total Pages | : 334 |
Release | : 2002 |
Genre | : Computers |
ISBN | : 9780262011945 |
A guide to the computer detection and recognition of 2D objects in gray-level images.