Multivariate Statistical Inference
Download Multivariate Statistical Inference full books in PDF, epub, and Kindle. Read online free Multivariate Statistical Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Narayan C. Giri |
Publisher | : Academic Press |
Total Pages | : 336 |
Release | : 2014-07-10 |
Genre | : Mathematics |
ISBN | : 1483263339 |
Multivariate Statistical Inference is a 10-chapter text that covers the theoretical and applied aspects of multivariate analysis, specifically the multivariate normal distribution using the invariance approach. Chapter I contains some special results regarding characteristic roots and vectors, and partitioned submatrices of real and complex matrices, as well as some special theorems on real and complex matrices useful in multivariate analysis. Chapter II deals with the theory of groups and related results that are useful for the development of invariant statistical test procedures, including the Jacobians of some specific transformations that are useful for deriving multivariate sampling distributions. Chapter III is devoted to basic notions of multivariate distributions and the principle of invariance in statistical testing of hypotheses. Chapters IV and V deal with the study of the real multivariate normal distribution through the probability density function and through a simple characterization and the maximum likelihood estimators of the parameters of the multivariate normal distribution and their optimum properties. Chapter VI tackles a systematic derivation of basic multivariate sampling distributions for the real case, while Chapter VII explores the tests and confidence regions of mean vectors of multivariate normal populations with known and unknown covariance matrices and their optimum properties. Chapter VIII is devoted to a systematic derivation of tests concerning covariance matrices and mean vectors of multivariate normal populations and to the study of their optimum properties. Chapters IX and X look into a treatment of discriminant analysis and the different covariance models and their analysis for the multivariate normal distribution. These chapters also deal with the principal components, factor models, canonical correlations, and time series. This book will prove useful to statisticians, mathematicians, and advance mathematics students.
Author | : Alvin C. Rencher |
Publisher | : Wiley-Interscience |
Total Pages | : 600 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : |
The most accessible introduction to the theory and practice of multivariate analysis Multivariate Statistical Inference and Applications is a user-friendly introduction to basic multivariate analysis theory and practice for statistics majors as well as nonmajors with little or no background in theoretical statistics. Among the many special features of this extremely accessible first text on multivariate analysis are: * Clear, step-by-step explanations of all key concepts and procedures along with original, easy-to-follow proofs * Numerous problems, examples, and tables of distributions * Many real-world data sets drawn from a wide range of disciplines * Reviews of univariate procedures that give rise to multivariate techniques * An extensive survey of the world literature on multivariate analysis * An in-depth review of matrix theory * A disk including all the data sets and SAS command files for all examples and numerical problems found in the book These same features also make Multivariate Statistical Inference and Applications an excellent professional resource for scientists and clinicians who need to acquaint themselves with multivariate techniques. It can be used as a stand-alone introduction or in concert with its more methods-oriented sibling volume, the critically acclaimed Methods of Multivariate Analysis.
Author | : Wolfgang Karl Härdle |
Publisher | : Springer Nature |
Total Pages | : 611 |
Release | : |
Genre | : |
ISBN | : 3031638336 |
Author | : Alvin C. Rencher |
Publisher | : John Wiley & Sons |
Total Pages | : 739 |
Release | : 2003-04-14 |
Genre | : Mathematics |
ISBN | : 0471461725 |
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a "methods" approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.
Author | : Brian Everitt |
Publisher | : Springer Science & Business Media |
Total Pages | : 284 |
Release | : 2011-04-23 |
Genre | : Mathematics |
ISBN | : 1441996508 |
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Author | : Stefan Bedbur |
Publisher | : Springer Nature |
Total Pages | : 147 |
Release | : 2021-10-07 |
Genre | : Mathematics |
ISBN | : 3030819000 |
This book provides a concise introduction to exponential families. Parametric families of probability distributions and their properties are extensively studied in the literature on statistical modeling and inference. Exponential families of distributions comprise density functions of a particular form, which enables general assertions and leads to nice features. With a focus on parameter estimation and hypotheses testing, the text introduces the reader to distributional and statistical properties of multivariate and multiparameter exponential families along with a variety of detailed examples. The material is widely self-contained and written in a mathematical setting. It may serve both as a concise, mathematically rigorous course on exponential families in a systematic structure and as an introduction to Mathematical Statistics restricted to the use of exponential families.
Author | : George A. Marcoulides |
Publisher | : Psychology Press |
Total Pages | : 335 |
Release | : 2014-01-14 |
Genre | : Psychology |
ISBN | : 1317778553 |
Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is pointing out the analogy between a common univariate statistical technique and the corresponding multivariate method. Many computer examples--drawing on SAS software --are used as demonstrations. Throughout the book, the computer is used as an adjunct to the presentation of a multivariate statistical method in an empirically oriented approach. Basically, the model adopted in this book is to first present the theory of a multivariate statistical method along with the basic mathematical computations necessary for the analysis of data. Subsequently, a real world problem is discussed and an example data set is provided for analysis. Throughout the presentation and discussion of a method, many references are made to the computer, output are explained, and exercises and examples with real data are included.
Author | : J.D. Jobson |
Publisher | : Springer Science & Business Media |
Total Pages | : 646 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461209552 |
An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory. It is assumed that the reader has the background equivalent to an introductory book in statistical inference. Can be read easily by those who have had brief exposure to calculus and linear algebra. Intended for first year graduate students in business, social and the biological sciences. Provides the student with the necessary statistics background for a course in research methodology. In addition, undergraduate statistics majors will find this text useful as a survey of linear models and their applications.
Author | : Thomas Cleff |
Publisher | : Springer |
Total Pages | : 488 |
Release | : 2019-07-10 |
Genre | : Business & Economics |
ISBN | : 303017767X |
This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.
Author | : S. James Press |
Publisher | : Courier Corporation |
Total Pages | : 706 |
Release | : 2012-09-05 |
Genre | : Mathematics |
ISBN | : 0486139387 |
Geared toward upper-level undergraduates and graduate students, this two-part treatment deals with the foundations of multivariate analysis as well as related models and applications. Starting with a look at practical elements of matrix theory, the text proceeds to discussions of continuous multivariate distributions, the normal distribution, and Bayesian inference; multivariate large sample distributions and approximations; the Wishart and other continuous multivariate distributions; and basic multivariate statistics in the normal distribution. The second half of the text moves from defining the basics to explaining models. Topics include regression and the analysis of variance; principal components; factor analysis and latent structure analysis; canonical correlations; stable portfolio analysis; classifications and discrimination models; control in the multivariate linear model; and structuring multivariate populations, with particular focus on multidimensional scaling and clustering. In addition to its value to professional statisticians, this volume may also prove helpful to teachers and researchers in those areas of behavioral and social sciences where multivariate statistics is heavily applied. This new edition features an appendix of answers to the exercises.