Multivariate Analysis For The Behavioral Sciences Second Edition
Download Multivariate Analysis For The Behavioral Sciences Second Edition full books in PDF, epub, and Kindle. Read online free Multivariate Analysis For The Behavioral Sciences Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jacob Cohen |
Publisher | : Routledge |
Total Pages | : 625 |
Release | : 2013-05-13 |
Genre | : Psychology |
ISBN | : 1134742770 |
Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.
Author | : Kimmo Vehkalahti |
Publisher | : CRC Press |
Total Pages | : 439 |
Release | : 2018-12-19 |
Genre | : Mathematics |
ISBN | : 135120226X |
Multivariate Analysis for the Behavioral Sciences, Second Edition is designed to show how a variety of statistical methods can be used to analyse data collected by psychologists and other behavioral scientists. Assuming some familiarity with introductory statistics, the book begins by briefly describing a variety of study designs used in the behavioral sciences, and the concept of models for data analysis. The contentious issues of p-values and confidence intervals are also discussed in the introductory chapter. After describing graphical methods, the book covers regression methods, including simple linear regression, multiple regression, locally weighted regression, generalized linear models, logistic regression, and survival analysis. There are further chapters covering longitudinal data and missing values, before the last seven chapters deal with multivariate analysis, including principal components analysis, factor analysis, multidimensional scaling, correspondence analysis, and cluster analysis. Features: Presents an accessible introduction to multivariate analysis for behavioral scientists Contains a large number of real data sets, including cognitive behavioral therapy, crime rates, and drug usage Includes nearly 100 exercises for course use or self-study Supplemented by a GitHub repository with all datasets and R code for the examples and exercises Theoretical details are separated from the main body of the text Suitable for anyone working in the behavioral sciences with a basic grasp of statistics
Author | : Brian S. Everitt |
Publisher | : CRC Press |
Total Pages | : 324 |
Release | : 2009-09-28 |
Genre | : Business & Economics |
ISBN | : 1439807701 |
Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences shows students how to apply statistical methods to behavioral science data in a sensible manner. Assuming some familiarity with introductory statistics, the book analyzes a host of real-world data to provide useful answers to real-life issues.The author begins by exploring
Author | : Christopher L. Aberson |
Publisher | : Routledge |
Total Pages | : 215 |
Release | : 2019-01-24 |
Genre | : Psychology |
ISBN | : 1351695061 |
Applied Power Analysis for the Behavioral Sciences is a practical "how-to" guide to conducting statistical power analyses for psychology and related fields. The book provides a guide to conducting analyses that is appropriate for researchers and students, including those with limited quantitative backgrounds. With practical use in mind, the text provides detailed coverage of topics such as how to estimate expected effect sizes and power analyses for complex designs. The topical coverage of the text, an applied approach, in-depth coverage of popular statistical procedures, and a focus on conducting analyses using R make the text a unique contribution to the power literature. To facilitate application and usability, the text includes ready-to-use R code developed for the text. An accompanying R package called pwr2ppl (available at https://github.com/chrisaberson/pwr2ppl) provides tools for conducting power analyses across each topic covered in the text.
Author | : Razia Azen |
Publisher | : Routledge |
Total Pages | : 354 |
Release | : 2021-05-26 |
Genre | : Psychology |
ISBN | : 1000383938 |
Featuring a practical approach with numerous examples, the second edition of Categorical Data Analysis for the Behavioral and Social Sciences focuses on helping the reader develop a conceptual understanding of categorical methods, making it a much more accessible text than others on the market. The authors cover common categorical analysis methods and emphasize specific research questions that can be addressed by each analytic procedure, including how to obtain results using SPSS, SAS, and R, so that readers are able to address the research questions they wish to answer. Each chapter begins with a "Look Ahead" section to highlight key content. This is followed by an in-depth focus and explanation of the relationship between the initial research question, the use of software to perform the analyses, and how to interpret the output substantively. Included at the end of each chapter are a range of software examples and questions to test knowledge. New to the second edition: The addition of R syntax for all analyses and an update of SPSS and SAS syntax. The addition of a new chapter on GLMMs. Clarification of concepts and ideas that graduate students found confusing, including revised problems at the end of the chapters. Written for those without an extensive mathematical background, this book is ideal for a graduate course in categorical data analysis taught in departments of psychology, educational psychology, human development and family studies, sociology, public health, and business. Researchers in these disciplines interested in applying these procedures will also appreciate this book’s accessible approach.
Author | : Kimmo Vehkalahti |
Publisher | : CRC Press |
Total Pages | : 444 |
Release | : 2018-12-19 |
Genre | : Mathematics |
ISBN | : 1351202251 |
Multivariate Analysis for the Behavioral Sciences, Second Edition is designed to show how a variety of statistical methods can be used to analyse data collected by psychologists and other behavioral scientists. Assuming some familiarity with introductory statistics, the book begins by briefly describing a variety of study designs used in the behavioral sciences, and the concept of models for data analysis. The contentious issues of p-values and confidence intervals are also discussed in the introductory chapter. After describing graphical methods, the book covers regression methods, including simple linear regression, multiple regression, locally weighted regression, generalized linear models, logistic regression, and survival analysis. There are further chapters covering longitudinal data and missing values, before the last seven chapters deal with multivariate analysis, including principal components analysis, factor analysis, multidimensional scaling, correspondence analysis, and cluster analysis. Features: Presents an accessible introduction to multivariate analysis for behavioral scientists Contains a large number of real data sets, including cognitive behavioral therapy, crime rates, and drug usage Includes nearly 100 exercises for course use or self-study Supplemented by a GitHub repository with all datasets and R code for the examples and exercises Theoretical details are separated from the main body of the text Suitable for anyone working in the behavioral sciences with a basic grasp of statistics
Author | : Rebecca M. Warner |
Publisher | : SAGE |
Total Pages | : 1209 |
Release | : 2013 |
Genre | : Mathematics |
ISBN | : 141299134X |
Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.
Author | : Lawrence S. Meyers |
Publisher | : SAGE Publications |
Total Pages | : 938 |
Release | : 2016-10-28 |
Genre | : Social Science |
ISBN | : 1506329780 |
Using a conceptual, non-mathematical approach, the updated Third Edition provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter. Authors Lawrence S. Meyers, Glenn Gamst, and A. J. Guarino integrate innovative multicultural topics in examples throughout the book, which include both conceptual and practical coverage of: statistical techniques of data screening; multiple regression; multilevel modeling; exploratory factor analysis; discriminant analysis; structural equation modeling; structural equation modeling invariance; survival analysis; multidimensional scaling; and cluster analysis.
Author | : S. James Press |
Publisher | : Courier Corporation |
Total Pages | : 706 |
Release | : 2012-09-05 |
Genre | : Mathematics |
ISBN | : 0486139387 |
Geared toward upper-level undergraduates and graduate students, this two-part treatment deals with the foundations of multivariate analysis as well as related models and applications. Starting with a look at practical elements of matrix theory, the text proceeds to discussions of continuous multivariate distributions, the normal distribution, and Bayesian inference; multivariate large sample distributions and approximations; the Wishart and other continuous multivariate distributions; and basic multivariate statistics in the normal distribution. The second half of the text moves from defining the basics to explaining models. Topics include regression and the analysis of variance; principal components; factor analysis and latent structure analysis; canonical correlations; stable portfolio analysis; classifications and discrimination models; control in the multivariate linear model; and structuring multivariate populations, with particular focus on multidimensional scaling and clustering. In addition to its value to professional statisticians, this volume may also prove helpful to teachers and researchers in those areas of behavioral and social sciences where multivariate statistics is heavily applied. This new edition features an appendix of answers to the exercises.
Author | : Patricia Cohen |
Publisher | : Psychology Press |
Total Pages | : 572 |
Release | : 2014-04-04 |
Genre | : Psychology |
ISBN | : 1135468249 |
This classic text on multiple regression is noted for its nonmathematical, applied, and data-analytic approach. Readers profit from its verbal-conceptual exposition and frequent use of examples. The applied emphasis provides clear illustrations of the principles and provides worked examples of the types of applications that are possible. Researchers learn how to specify regression models that directly address their research questions. An overview of the fundamental ideas of multiple regression and a review of bivariate correlation and regression and other elementary statistical concepts provide a strong foundation for understanding the rest of the text. The third edition features an increased emphasis on graphics and the use of confidence intervals and effect size measures, and an accompanying CD with data for most of the numerical examples along with the computer code for SPSS, SAS, and SYSTAT. Applied Multiple Regression serves as both a textbook for graduate students and as a reference tool for researchers in psychology, education, health sciences, communications, business, sociology, political science, anthropology, and economics. An introductory knowledge of statistics is required. Self-standing chapters minimize the need for researchers to refer to previous chapters.