Multivariable Calculus And Differential Geometry
Download Multivariable Calculus And Differential Geometry full books in PDF, epub, and Kindle. Read online free Multivariable Calculus And Differential Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Gerard Walschap |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 366 |
Release | : 2015-07-01 |
Genre | : Mathematics |
ISBN | : 3110369540 |
This book offers an introduction to differential geometry for the non-specialist. It includes most of the required material from multivariable calculus, linear algebra, and basic analysis. An intuitive approach and a minimum of prerequisites make it a valuable companion for students of mathematics and physics. The main focus is on manifolds in Euclidean space and the metric properties they inherit from it. Among the topics discussed are curvature and how it affects the shape of space, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
Author | : Gerard Walschap |
Publisher | : de Gruyter |
Total Pages | : 0 |
Release | : 2015 |
Genre | : Calculus |
ISBN | : 9783110369496 |
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of
Author | : Sean Dineen |
Publisher | : Springer Science & Business Media |
Total Pages | : 276 |
Release | : 2001-03-30 |
Genre | : Mathematics |
ISBN | : 9781852334727 |
This book provides the higher-level reader with a comprehensive review of all important aspects of Differential Calculus, Integral Calculus and Geometric Calculus of several variables The revised edition, which includes additional exercises and expanded solutions, and gives a solid description of the basic concepts via simple familiar examples which are then tested in technically demanding situations. Readers will gain a deep understanding of the uses and limitations of multivariate calculus.
Author | : Michael Spivak |
Publisher | : Westview Press |
Total Pages | : 164 |
Release | : 1965 |
Genre | : Science |
ISBN | : 9780805390216 |
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Author | : Theodore Shifrin |
Publisher | : John Wiley & Sons |
Total Pages | : 514 |
Release | : 2004-01-26 |
Genre | : Mathematics |
ISBN | : 047152638X |
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.
Author | : Herbert Busemann |
Publisher | : Courier Corporation |
Total Pages | : 434 |
Release | : 2012-07-12 |
Genre | : Mathematics |
ISBN | : 0486154629 |
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Author | : Loring W. Tu |
Publisher | : Springer |
Total Pages | : 358 |
Release | : 2017-06-01 |
Genre | : Mathematics |
ISBN | : 3319550845 |
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Author | : Wolfgang Kühnel |
Publisher | : American Mathematical Soc. |
Total Pages | : 394 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 0821839888 |
Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
Author | : John Hamal Hubbard |
Publisher | : |
Total Pages | : 284 |
Release | : 2009 |
Genre | : Algebras, Linear |
ISBN | : 9780971576674 |
Author | : Lynn Harold Loomis |
Publisher | : World Scientific Publishing Company |
Total Pages | : 595 |
Release | : 2014-02-26 |
Genre | : Mathematics |
ISBN | : 9814583952 |
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.