Multiscale Modelling Of Neuronal Dynamics And Their Dysfunction In The Developing Brain
Download Multiscale Modelling Of Neuronal Dynamics And Their Dysfunction In The Developing Brain full books in PDF, epub, and Kindle. Read online free Multiscale Modelling Of Neuronal Dynamics And Their Dysfunction In The Developing Brain ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Karl Friston |
Publisher | : Frontiers Media SA |
Total Pages | : 238 |
Release | : 2015-05-25 |
Genre | : Differential equations |
ISBN | : 2889194272 |
Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology. In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.
Author | : Ahmed A. Moustafa |
Publisher | : John Wiley & Sons |
Total Pages | : 588 |
Release | : 2017-09-11 |
Genre | : Psychology |
ISBN | : 1119159075 |
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.
Author | : Vassilis Cutsuridis |
Publisher | : Springer Nature |
Total Pages | : 223 |
Release | : 2019-10-11 |
Genre | : Medical |
ISBN | : 3030188302 |
This book focuses on our current understanding of brain dynamics in various brain disorders (e.g. epilepsy, Alzheimer’s and Parkinson’s disease) and how the multi-scale, multi-level tools of computational neuroscience can enhance this understanding. In recent years, there have been significant advances in the study of the dynamics of the disordered brain at both the microscopic and the macroscopic levels. This understanding can be furthered by the application of multi-scale computational models as integrative principles that may link single neuron dynamics and the dynamics of local and distant brain regions observed using human EEG, ERPs, MEG, LFPs and fMRI. Focusing on the computational models that are used to study movement, memory and cognitive disorders as well as epilepsy and consciousness related diseases, the book brings together physiologists and anatomists investigating cortical circuits; cognitive neuroscientists studying brain dynamics and behavior by means of EEG and functional magnetic resonance imaging (fMRI); and computational neuroscientists using neural modeling techniques to explore local and large-scale disordered brain dynamics. Covering topics that have a significant impact on the field of medicine, neuroscience and computer science, the book appeals to a diverse group of investigators.
Author | : Stephen Coombes |
Publisher | : Springer |
Total Pages | : 488 |
Release | : 2014-06-17 |
Genre | : Mathematics |
ISBN | : 3642545939 |
Neural field theory has a long-standing tradition in the mathematical and computational neurosciences. Beginning almost 50 years ago with seminal work by Griffiths and culminating in the 1970ties with the models of Wilson and Cowan, Nunez and Amari, this important research area experienced a renaissance during the 1990ties by the groups of Ermentrout, Robinson, Bressloff, Wright and Haken. Since then, much progress has been made in both, the development of mathematical and numerical techniques and in physiological refinement und understanding. In contrast to large-scale neural network models described by huge connectivity matrices that are computationally expensive in numerical simulations, neural field models described by connectivity kernels allow for analytical treatment by means of methods from functional analysis. Thus, a number of rigorous results on the existence of bump and wave solutions or on inverse kernel construction problems are nowadays available. Moreover, neural fields provide an important interface for the coupling of neural activity to experimentally observable data, such as the electroencephalogram (EEG) or functional magnetic resonance imaging (fMRI). And finally, neural fields over rather abstract feature spaces, also called dynamic fields, found successful applications in the cognitive sciences and in robotics. Up to now, research results in neural field theory have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. There is no comprehensive collection of results or reviews available yet. With our proposed book Neural Field Theory, we aim at filling this gap in the market. We received consent from some of the leading scientists in the field, who are willing to write contributions for the book, among them are two of the founding-fathers of neural field theory: Shun-ichi Amari and Jack Cowan.
Author | : Michael Brecht |
Publisher | : Frontiers E-books |
Total Pages | : 134 |
Release | : 2015-01-05 |
Genre | : Brain |
ISBN | : 2889193896 |
How does the motor cortex enable mammals to generate accurate, complex, and purposeful movements? A cubic millimeter of motor cortex contains roughly ̃10̂5 cells, an amazing ̃4 Km of axons and ̃0.4 Km of dendrites, somehow wired together with ̃10̂9 synapses. Corticospinal neurons (a.k.a. Betz cells, upper motor neurons) are a key cell type, monosynaptically conveying the output of the cortical circuit to the spinal cord circuits and lower motor neurons. But corticospinal neurons are greatly outnumbered by all the other kinds of neurons in motor cortex, which presumably also contribute crucially to the computational operations carried out for planning, executing, and guiding actions. Determining the wiring patterns, the dynamics of signaling, and how these relate to movement at the level of specific excitatory and inhibitory cell types is critically important for a mechanistic understanding of the input-output organization of motor cortex. While there is a predictive microcircuit hypothesis that relates motor learning to the operation of the cerebellar cortex, we lack such a microcircuit understanding in motor cortex and we consider microcircuits as a central research topic in the field. This Research Topic covers any issues relating to the microcircuit-level analysis of motor cortex. Contributions are welcomed from neuroscientists at all levels of investigation, from in vivo physiology and imaging in humans and monkeys, to rodent models, in vitro anatomy, electrophysiology, electroanatomy, cellular imaging, molecular biology, disease models, computational modeling, and more.
Author | : Bernhard Schölkopf |
Publisher | : MIT Press |
Total Pages | : 1668 |
Release | : 2007 |
Genre | : Artificial intelligence |
ISBN | : 0262195682 |
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
Author | : Nicholas T. Carnevale |
Publisher | : Cambridge University Press |
Total Pages | : 399 |
Release | : 2006-01-12 |
Genre | : Medical |
ISBN | : 1139447831 |
The authoritative reference on NEURON, the simulation environment for modeling biological neurons and neural networks that enjoys wide use in the experimental and computational neuroscience communities. This book shows how to use NEURON to construct and apply empirically based models. Written primarily for neuroscience investigators, teachers, and students, it assumes no previous knowledge of computer programming or numerical methods. Readers with a background in the physical sciences or mathematics, who have some knowledge about brain cells and circuits and are interested in computational modeling, will also find it helpful. The NEURON Book covers material that ranges from the inner workings of this program, to practical considerations involved in specifying the anatomical and biophysical properties that are to be represented in models. It uses a problem-solving approach, with many working examples that readers can try for themselves.
Author | : James M. Bower |
Publisher | : Springer Verlag |
Total Pages | : 440 |
Release | : 1995 |
Genre | : Computers |
ISBN | : |
This title introduces and guides the reader through Genesis, a simulation and modeling software tool that is delivered on-line via the Internet from a California Institute of Technology file server. It contains a contribution of models and simulations, plus step-by-step tutorials. 50 illustrations. Approx.
Author | : Sergey Makarov |
Publisher | : Springer Nature |
Total Pages | : 398 |
Release | : 2019-08-27 |
Genre | : Technology & Engineering |
ISBN | : 3030212939 |
This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.
Author | : Eugene M. Izhikevich |
Publisher | : MIT Press |
Total Pages | : 459 |
Release | : 2010-01-22 |
Genre | : Medical |
ISBN | : 0262514206 |
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.