Multiple Imputation for Nonresponse in Surveys

Multiple Imputation for Nonresponse in Surveys
Author: Donald B. Rubin
Publisher: John Wiley & Sons
Total Pages: 258
Release: 2009-09-25
Genre: Mathematics
ISBN: 0470317361

Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.

Multiple Imputation for Nonresponse in Surveys

Multiple Imputation for Nonresponse in Surveys
Author: Donald B. Rubin
Publisher: John Wiley & Sons
Total Pages: 324
Release: 2004-06-09
Genre: Mathematics
ISBN: 9780471655749

Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.

Multiple Imputation of Missing Data Using SAS

Multiple Imputation of Missing Data Using SAS
Author: Patricia Berglund
Publisher: SAS Institute
Total Pages: 328
Release: 2014-07-01
Genre: Computers
ISBN: 162959203X

Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Analysis of Incomplete Multivariate Data

Analysis of Incomplete Multivariate Data
Author: J.L. Schafer
Publisher: CRC Press
Total Pages: 470
Release: 1997-08-01
Genre: Mathematics
ISBN: 9781439821862

The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.

Survey Nonresponse

Survey Nonresponse
Author: Robert M. Groves
Publisher: Wiley-Interscience
Total Pages: 528
Release: 2002
Genre: Business & Economics
ISBN:

This volume offers coverage of research in the field of survey nonresponse, the primary threat to the statistical integrity of surveys. This book was written in conjunction with the International Conference on Survey Nonresponse, October 1999.

Multiple Imputation of Missing Data in Practice

Multiple Imputation of Missing Data in Practice
Author: Yulei He
Publisher: CRC Press
Total Pages: 419
Release: 2021-11-20
Genre: Mathematics
ISBN: 0429530978

Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community. Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book). Key Features Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.) Explores measurement error problems with multiple imputation Discusses analysis strategies for multiple imputation diagnostics Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)

Flexible Imputation of Missing Data, Second Edition

Flexible Imputation of Missing Data, Second Edition
Author: Stef van Buuren
Publisher: CRC Press
Total Pages: 444
Release: 2018-07-17
Genre: Mathematics
ISBN: 0429960352

Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Nonresponse in Social Science Surveys

Nonresponse in Social Science Surveys
Author: National Research Council
Publisher: National Academies Press
Total Pages: 167
Release: 2013-10-26
Genre: Social Science
ISBN: 0309272475

For many household surveys in the United States, responses rates have been steadily declining for at least the past two decades. A similar decline in survey response can be observed in all wealthy countries. Efforts to raise response rates have used such strategies as monetary incentives or repeated attempts to contact sample members and obtain completed interviews, but these strategies increase the costs of surveys. This review addresses the core issues regarding survey nonresponse. It considers why response rates are declining and what that means for the accuracy of survey results. These trends are of particular concern for the social science community, which is heavily invested in obtaining information from household surveys. The evidence to date makes it apparent that current trends in nonresponse, if not arrested, threaten to undermine the potential of household surveys to elicit information that assists in understanding social and economic issues. The trends also threaten to weaken the validity of inferences drawn from estimates based on those surveys. High nonresponse rates create the potential or risk for bias in estimates and affect survey design, data collection, estimation, and analysis. The survey community is painfully aware of these trends and has responded aggressively to these threats. The interview modes employed by surveys in the public and private sectors have proliferated as new technologies and methods have emerged and matured. To the traditional trio of mail, telephone, and face-to-face surveys have been added interactive voice response (IVR), audio computer-assisted self-interviewing (ACASI), web surveys, and a number of hybrid methods. Similarly, a growing research agenda has emerged in the past decade or so focused on seeking solutions to various aspects of the problem of survey nonresponse; the potential solutions that have been considered range from better training and deployment of interviewers to more use of incentives, better use of the information collected in the data collection, and increased use of auxiliary information from other sources in survey design and data collection. Nonresponse in Social Science Surveys: A Research Agenda also documents the increased use of information collected in the survey process in nonresponse adjustment.

Multiple Imputation and its Application

Multiple Imputation and its Application
Author: James Carpenter
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2012-12-21
Genre: Medical
ISBN: 1119942276

A practical guide to analysing partially observeddata. Collecting, analysing and drawing inferences from data iscentral to research in the medical and social sciences.Unfortunately, it is rarely possible to collect all the intendeddata. The literature on inference from the resultingincomplete data is now huge, and continues to grow both asmethods are developed for large and complex data structures, and asincreasing computer power and suitable software enable researchersto apply these methods. This book focuses on a particular statistical method foranalysing and drawing inferences from incomplete data, calledMultiple Imputation (MI). MI is attractive because it is bothpractical and widely applicable. The authors aim is to clarify theissues raised by missing data, describing the rationale for MI, therelationship between the various imputation models and associatedalgorithms and its application to increasingly complex datastructures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partiallyobserved data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider whenanalysing incomplete data from both observational studies andrandomized trials. Provides a detailed discussion of the practical use of MI withreal-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactionswith multiple imputation, survival analysis, multilevel multipleimputation, sensitivity analysis via multiple imputation, usingnon-response weights with multiple imputation and doubly robustmultiple imputation. Multiple Imputation and its Application is aimed atquantitative researchers and students in the medical and socialsciences with the aim of clarifying the issues raised by theanalysis of incomplete data data, outlining the rationale for MIand describing how to consider and address the issues that arise inits application.

Encyclopedia of Survey Research Methods

Encyclopedia of Survey Research Methods
Author: Paul J. Lavrakas
Publisher: SAGE Publications
Total Pages: 1073
Release: 2008-09-12
Genre: Social Science
ISBN: 150631788X

To the uninformed, surveys appear to be an easy type of research to design and conduct, but when students and professionals delve deeper, they encounter the vast complexities that the range and practice of survey methods present. To complicate matters, technology has rapidly affected the way surveys can be conducted; today, surveys are conducted via cell phone, the Internet, email, interactive voice response, and other technology-based modes. Thus, students, researchers, and professionals need both a comprehensive understanding of these complexities and a revised set of tools to meet the challenges. In conjunction with top survey researchers around the world and with Nielsen Media Research serving as the corporate sponsor, the Encyclopedia of Survey Research Methods presents state-of-the-art information and methodological examples from the field of survey research. Although there are other "how-to" guides and references texts on survey research, none is as comprehensive as this Encyclopedia, and none presents the material in such a focused and approachable manner. With more than 600 entries, this resource uses a Total Survey Error perspective that considers all aspects of possible survey error from a cost-benefit standpoint. Key Features Covers all major facets of survey research methodology, from selecting the sample design and the sampling frame, designing and pretesting the questionnaire, data collection, and data coding, to the thorny issues surrounding diminishing response rates, confidentiality, privacy, informed consent and other ethical issues, data weighting, and data analyses Presents a Reader′s Guide to organize entries around themes or specific topics and easily guide users to areas of interest Offers cross-referenced terms, a brief listing of Further Readings, and stable Web site URLs following most entries The Encyclopedia of Survey Research Methods is specifically written to appeal to beginning, intermediate, and advanced students, practitioners, researchers, consultants, and consumers of survey-based information.