Multidimensional Complex Analysis And Partial Differential Equations
Download Multidimensional Complex Analysis And Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Multidimensional Complex Analysis And Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Francois Treves |
Publisher | : American Mathematical Soc. |
Total Pages | : 290 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 0821805096 |
This collection of papers by outstanding contributors in analysis, partial differential equations and several complex variables is dedicated to Professor Treves in honour of his 65th birthday. There are five excellent survey articles covering analytic singularities, holomorphically nondegenerate algebraic hypersurfaces, analyticity of CR mappings, removable singularities of vector fields and local solvability for systems of vector fields. The other papers are original research contributions on topics such as Klein-Gordon and Dirac equations, Toeplitz operators, elliptic structures, complexification of Lie groups, and pseudo-differential operators.
Author | : Walter A. Strauss |
Publisher | : John Wiley & Sons |
Total Pages | : 467 |
Release | : 2007-12-21 |
Genre | : Mathematics |
ISBN | : 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Author | : Sylvie Benzoni-Gavage |
Publisher | : Oxford University Press, USA |
Total Pages | : 535 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 019921123X |
Authored by leading scholars, this comprehensive text presents a view of the multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. It is useful to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.
Author | : E. Ramirez de Arellano |
Publisher | : Birkhäuser |
Total Pages | : 282 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034886985 |
This volume, addressed to researchers and postgraduate students, compiles up-to-date research and expository papers on different aspects of complex analysis, including relations to operator theory and hypercomplex analysis. Subjects include the Schrödinger equation, subelliptic operators, Lie algebras and superalgebras, among others.
Author | : Randall J. LeVeque |
Publisher | : SIAM |
Total Pages | : 356 |
Release | : 2007-01-01 |
Genre | : Mathematics |
ISBN | : 9780898717839 |
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Author | : Helmut Florian |
Publisher | : World Scientific |
Total Pages | : 473 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 9812794557 |
Functional analysis is not only a tool for unifying mathematical analysis, but it also provides the background for today''s rapid development of the theory of partial differential equations. Using concepts of functional analysis, the field of complex analysis has developed methods (such as the theory of generalized analytic functions) for solving very general classes of partial differential equations. This book is aimed at promoting further interactions of functional analysis, partial differential equations, and complex analysis including its generalizations such as Clifford analysis. New interesting problems in the field of partial differential equations concern, for instance, the Dirichlet problem for hyperbolic equations. Applications to mathematical physics address mainly Maxwell''s equations, crystal optics, dynamical problems for cusped bars, and conservation laws. Sample Chapter(s). Hyperbolic Equations, Waves and the Singularity Theory (858 KB). Contents: Boundary Value Problems and Initial Value Problems for Partial Differential Equations; Applications of Functional-Analytic and Complex Methods to Mathematical Physics; Partial Complex Differential Equations in the Plane; Complex Methods in Higher Dimensions. Readership: Researchers, lecturers and graduate students in the fields of analysis & differential equations, applied mathematics and mathematical physics.
Author | : David A. Kopriva |
Publisher | : Springer Science & Business Media |
Total Pages | : 397 |
Release | : 2009-05-27 |
Genre | : Mathematics |
ISBN | : 9048122619 |
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Author | : Krzysztof Wojciechowski |
Publisher | : American Mathematical Soc. |
Total Pages | : 282 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 0821820613 |
This collection of papers by leading researchers gives a broad picture of current research directions in geometric aspects of partial differential equations. Based on lectures presented at a Minisymposium on Spectral Invariants - Heat Equation Approach, held in September 1998 at Roskilde University in Denmark, the book provides both a careful exposition of new perspectives in classical index theory and an introduction to currently active areas of the field. Presented here are new index theorems as well as new calculations of the eta-invariant, of the spectral flow, of the Maslov index, of Seiberg-Witten monopoles, heat kernels, determinants, non-commutative residues, and of the Ray-Singer torsion. New types of boundary value problems for operators of Dirac type and generalizations to manifolds with cuspidal ends, to non-compact and to infinite-dimensional manifolds are also discussed. Throughout the book, the use of advanced analysis methods for gaining geometric insight emerges as a central theme. Aimed at graduate students and researchers, this book would be suitable as a text for an advanced graduate topics course on geometric aspects of partial differential equations and spectral invariants.
Author | : Gui-Qiang Chen |
Publisher | : American Mathematical Soc. |
Total Pages | : 323 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 0821811967 |
This volume is a collection of original research papers and expository articles stemming from the scientific program of the Nonlinear PDE Emphasis Year held at Northwestern University (Evanston, IL) in March 1998. The book offers a cross-section of the most significant recent advances and current trends and directions in nonlinear partial differential equations and related topics. The book's contributions offer two perspectives. There are papers on general analytical treatment of the theory and papers on computational methods and applications originating from significant realistic mathematical models of natural phenomena. Also included are articles that bridge the gap between these two perspectives, seeking synergistic links between theory and modeling and computation. The volume offers direct insight into recent trends in PDEs. This volume is also available on the Web. Those who purchase the print edition can gain free access by going to www.ams.org/conm/.
Author | : María Cristina Pereyra |
Publisher | : Springer |
Total Pages | : 380 |
Release | : 2016-09-15 |
Genre | : Mathematics |
ISBN | : 3319309617 |
Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book contains survey and expository articles by leading experts in their corresponding fields, and features fully-refereed, high-quality papers exploring new results and trends in spectral theory, mathematical physics, geometric function theory, and partial differential equations. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. Another shared research interest of the contributors of this volume lies in the area of applied harmonic analysis, where a new notion called chromatic derivatives has recently been introduced in communication engineering. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6, 2014. During the event, participants honored the memory of Cora Sadosky—a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional mathematician and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.