Multi-Image Analysis

Multi-Image Analysis
Author: Reinhard Klette
Publisher: Springer
Total Pages: 296
Release: 2003-06-29
Genre: Computers
ISBN: 354045134X

This book constitutes the thoroughly refereed post-proceedings of the 10th International Workshop on Theoretical Foundations of Computer Vision, held at Dagstuhl Castle, Germany, in March 2000. The 20 revised full papers presented have been through two rounds of reviewing, selection, and revision and give a representative assessment of the foundational issues in multiple-image processing. The papers are organized in topical sections on 3D data acquisition and sensor design, multi-image analysis, data fusion in 3D scene description, and applied 3D vision and virtual reality.

Front-End Vision and Multi-Scale Image Analysis

Front-End Vision and Multi-Scale Image Analysis
Author: Bart M. Haar Romeny
Publisher: Springer Science & Business Media
Total Pages: 470
Release: 2008-10-24
Genre: Computers
ISBN: 140208840X

Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.

Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis
Author: Gobert Lee
Publisher: Springer Nature
Total Pages: 184
Release: 2020-02-06
Genre: Medical
ISBN: 3030331288

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Medical Image Analysis

Medical Image Analysis
Author: Atam P. Dhawan
Publisher: John Wiley & Sons
Total Pages: 396
Release: 2011-03-29
Genre: Technology & Engineering
ISBN: 0470922893

The expanded and revised edition will split Chapter 4 to include more details and examples in FMRI, DTI, and DWI for MR image modalities. The book will also expand ultrasound imaging to 3-D dynamic contrast ultrasound imaging in a separate chapter. A new chapter on Optical Imaging Modalities elaborating microscopy, confocal microscopy, endoscopy, optical coherent tomography, fluorescence and molecular imaging will be added. Another new chapter on Simultaneous Multi-Modality Medical Imaging including CT-SPECT and CT-PET will also be added. In the image analysis part, chapters on image reconstructions and visualizations will be significantly enhanced to include, respectively, 3-D fast statistical estimation based reconstruction methods, and 3-D image fusion and visualization overlaying multi-modality imaging and information. A new chapter on Computer-Aided Diagnosis and image guided surgery, and surgical and therapeutic intervention will also be added. A companion site containing power point slides, author biography, corrections to the first edition and images from the text can be found here: ftp://ftp.wiley.com/public/sci_tech_med/medical_image/ Send an email to: [email protected] to obtain a solutions manual. Please include your affiliation in your email.

Medical Image Recognition, Segmentation and Parsing

Medical Image Recognition, Segmentation and Parsing
Author: S. Kevin Zhou
Publisher: Academic Press
Total Pages: 548
Release: 2015-12-11
Genre: Computers
ISBN: 0128026766

This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn: - Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects - Methods and theories for medical image recognition, segmentation and parsing of multiple objects - Efficient and effective machine learning solutions based on big datasets - Selected applications of medical image parsing using proven algorithms - Provides a comprehensive overview of state-of-the-art research on medical image recognition, segmentation, and parsing of multiple objects - Presents efficient and effective approaches based on machine learning paradigms to leverage the anatomical context in the medical images, best exemplified by large datasets - Includes algorithms for recognizing and parsing of known anatomies for practical applications

Entropy in Image Analysis

Entropy in Image Analysis
Author: Amelia Carolina Sparavigna
Publisher: MDPI
Total Pages: 456
Release: 2019-06-24
Genre: Technology & Engineering
ISBN: 3039210920

Image analysis is a fundamental task for extracting information from images acquired across a range of different devices. Since reliable quantitative results are requested, image analysis requires highly sophisticated numerical and analytical methods—particularly for applications in medicine, security, and remote sensing, where the results of the processing may consist of vitally important data. The contributions to this book provide a good overview of the most important demands and solutions concerning this research area. In particular, the reader will find image analysis applied for feature extraction, encryption and decryption of data, color segmentation, and in the support new technologies. In all the contributions, entropy plays a pivotal role.

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis
Author: S. Kevin Zhou
Publisher: Academic Press
Total Pages: 544
Release: 2023-11-23
Genre: Computers
ISBN: 0323858880

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Progress in Image Analysis and Processing, ICIAP 2013

Progress in Image Analysis and Processing, ICIAP 2013
Author: Alfredo Petrosino
Publisher: Springer
Total Pages: 789
Release: 2013-09-03
Genre: Computers
ISBN: 3642411843

This two volume set (LNCS 8156 and 8157) constitutes the refereed proceedings of the 17th International Conference on Image Analysis and Processing, ICIAP 2013, held in Naples, Italy, in September 2013. The 162 papers presented were carefully reviewed and selected from 354 submissions. The papers aim at highlighting the connection and synergies of image processing and analysis with pattern recognition and machine learning, human computer systems, biomedical imaging and applications, multimedia interaction and processing, 3D computer vision, and understanding objects and scene.

Image Processing and GIS for Remote Sensing

Image Processing and GIS for Remote Sensing
Author: Jian Guo Liu
Publisher: John Wiley & Sons
Total Pages: 484
Release: 2016-03-21
Genre: Technology & Engineering
ISBN: 1118724208

Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner. The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience. The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.

Image Analysis

Image Analysis
Author: Joni-Kristian Kamarainen
Publisher: Springer
Total Pages: 746
Release: 2013-05-27
Genre: Computers
ISBN: 3642388868

This book constitutes the refereed proceedings of the 18th Scandinavian Conference on Image Analysis, SCIA 2013, held in Espoo, Finland, in June 2013. The 67 revised full papers presented were carefully reviewed and selected from 132 submissions. The papers are organized in topical sections on feature extraction and segmentation, pattern recognition and machine learning, medical and biomedical image analysis, faces and gestures, object and scene recognition, matching, registration, and alignment, 3D vision, color and multispectral image analysis, motion analysis, systems and applications, human-centered computing, and video and multimedia analysis.