Moving Boundary Pde Analysis
Download Moving Boundary Pde Analysis full books in PDF, epub, and Kindle. Read online free Moving Boundary Pde Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : William Schiesser |
Publisher | : CRC Press |
Total Pages | : 186 |
Release | : 2019-05-29 |
Genre | : Mathematics |
ISBN | : 100000788X |
Mathematical models stated as systems of partial differential equations (PDEs) are broadly used in biology, chemistry, physics and medicine (physiology). These models describe the spatial and temporial variations of the problem system dependent variables, such as temperature, chemical and biochemical concentrations and cell densities, as a function of space and time (spatiotemporal distributions). For a complete PDE model, initial conditions (ICs) specifying how the problem system starts and boundary conditions (BCs) specifying how the system is defined at its spatial boundaries, must also be included for a well-posed PDE model. In this book, PDE models are considered for which the physical boundaries move with time. For example, as a tumor grows, its boundary moves outward. In atherosclerosis, the plaque formation on the arterial wall moves inward, thereby restricting blood flow with serious consequences such as stroke and myocardial infarction (heart attack). These two examples are considered as applications of the reported moving boundary PDE (MBPDE) numerical method (algorithm). The method is programmed in a set of documented routines coded in R, a quality, open-source scientific programming system. The routines are provided as a download so that the reader/analyst/researcher can use MFPDE models without having to first study numerical methods and computer programming.
Author | : WILLIAM. SCHIESSER |
Publisher | : |
Total Pages | : 0 |
Release | : 2023-09-25 |
Genre | : |
ISBN | : 9781032654003 |
The book is directed to the numerical integration (solution) of systems of partial differential equations (PDEs) for which the boundary conditions move in space. In applications, the physical boundaries move as the solution evolves in time. The book provides examples of the applications in tumor growth and atherosclerosis
Author | : W. E. Schiesser |
Publisher | : CRC Press |
Total Pages | : 182 |
Release | : 2019 |
Genre | : Mathematics |
ISBN | : 9780429275128 |
Mathematical models stated as systems of partial differential equations (PDEs) are broadly used in biology, chemistry, physics and medicine (physiology). These models describe the spatial and temporial variations of the problem system dependent variables, such as temperature, chemical and biochemical concentrations and cell densities, as a function of space and time (spatiotemporal distributions). For a complete PDE model, initial conditions (ICs) specifying how the problem system starts and boundary conditions (BCs) specifying how the system is defined at its spatial boundaries, must also be included for a well-posed PDE model. In this book, PDE models are considered for which the physical boundaries move with time. For example, as a tumor grows, its boundary moves outward. In atherosclerosis, the plaque formation on the arterial wall moves inward, thereby restricting blood flow with serious consequences such as stroke and myocardial infarction (heart attack). These two examples are considered as applications of the reported moving boundary PDE (MBPDE) numerical method (algorithm). The method is programmed in a set of documented routines coded in R, a quality, open-source scientific programming system. The routines are provided as a download so that the reader/analyst/researcher can use MFPDE models without having to first study numerical methods and computer programming.
Author | : Randall J. LeVeque |
Publisher | : SIAM |
Total Pages | : 356 |
Release | : 2007-01-01 |
Genre | : Mathematics |
ISBN | : 9780898717839 |
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Author | : William E. Schiesser |
Publisher | : Springer |
Total Pages | : 117 |
Release | : 2019-05-30 |
Genre | : Medical |
ISBN | : 3030190803 |
The focus of this book is a detailed discussion of a dual cancer vaccine (CV)-immune checkpoint inhibitor (ICI) mathematical model formulated as a system of partial differential equations (PDEs) defining the spatiotemporal distribution of cells and biochemicals during tumor growth. A computer implementation of the model is discussed in detail for the quantitative evaluation of CV-ICI therapy. The coding (programming) consists of a series of routines in R, a quality, open-source scientific computing system that is readily available from the internet. The routines are based on the method of lines (MOL), a general PDE algorithm that can be executed on modest computers within the basic R system. The reader can download and use the routines to confirm the model solutions reported in the book, then experiment with the model by varying the parameters and modifying/extending the equations, and even studying alternative models with the PDE methodology demonstrated by the CV-ICI model. Spatiotemporal Modeling of Cancer Immunotherapy: Partial Differential Equation Analysis in R facilitates the use of the model, and more generally, computer- based analysis of cancer immunotherapy mathematical models, as a step toward the development and quantitative evaluation of the immunotherapy approach to the treatment of cancer. To download the R routines, please visit: http://www.lehigh.edu/~wes1/ci_download
Author | : Stefanie Gutschmidt |
Publisher | : Springer |
Total Pages | : 292 |
Release | : 2019-03-28 |
Genre | : Technology & Engineering |
ISBN | : 3030137201 |
Many problems in mechanics involve deformable domains with moving boundaries, including fluid-structure interaction, multiphase flows, flows over soft tissues and textiles, or flows involving accretion/erosion to name but a few. The presence of a moving boundary presents considerable challenges when it comes to modelling and understanding the underlying system dynamics. This proceedings volume collects contributions made at the IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics held in Christchurch, New Zealand in February 2018.
Author | : Shumon Koga |
Publisher | : Springer Nature |
Total Pages | : 352 |
Release | : 2020-11-01 |
Genre | : Science |
ISBN | : 3030584909 |
This monograph introduces breakthrough control algorithms for partial differential equation models with moving boundaries, the study of which is known as the Stefan problem. The algorithms can be used to improve the performance of various processes with phase changes, such as additive manufacturing. Using the authors' innovative design solutions, readers will also be equipped to apply estimation algorithms for real-world phase change dynamics, from polar ice to lithium-ion batteries. A historical treatment of the Stefan problem opens the book, situating readers in the larger context of the area. Following this, the chapters are organized into two parts. The first presents the design method and analysis of the boundary control and estimation algorithms. Part two then explores a number of applications, such as 3D printing via screw extrusion and laser sintering, and also discusses the experimental verifications conducted. A number of open problems and provided as well, offering readers multiple paths to explore in future research. Materials Phase Change PDE Control & Estimation is ideal for researchers and graduate students working on control and dynamical systems, and particularly those studying partial differential equations and moving boundaries. It will also appeal to industrial engineers and graduate students in engineering who are interested in this area.
Author | : Adam Korytowski |
Publisher | : Springer Science & Business Media |
Total Pages | : 515 |
Release | : 2009-10-15 |
Genre | : Technology & Engineering |
ISBN | : 3642048013 |
rd This book constitutes a collection of extended versions of papers presented at the 23 IFIP TC7 Conference on System Modeling and Optimization, which was held in C- cow, Poland, on July 23–27, 2007. It contains 7 plenary and 22 contributed articles, the latter selected via a peer reviewing process. Most of the papers are concerned with optimization and optimal control. Some of them deal with practical issues, e. g. , p- formance-based design for seismic risk reduction, or evolutionary optimization in structural engineering. Many contributions concern optimization of infini- dimensional systems, ranging from a general overview of the variational analysis, through optimization and sensitivity analysis of PDE systems, to optimal control of neutral systems. A significant group of papers is devoted to shape analysis and opti- zation. Sufficient optimality conditions for ODE problems, and stochastic control methods applied to mathematical finance, are also investigated. The remaining papers are on mathematical programming, modeling, and information technology. The conference was the 23rd event in the series of such meetings biennially org- ized under the auspices of the Seventh Technical Committee “Systems Modeling and Optimization” of the International Federation for Information Processing (IFIP TC7).
Author | : Haim Brezis |
Publisher | : Springer Science & Business Media |
Total Pages | : 600 |
Release | : 2010-11-02 |
Genre | : Mathematics |
ISBN | : 0387709142 |
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Author | : Weizhang Huang |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2010-10-26 |
Genre | : Mathematics |
ISBN | : 1441979166 |
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.