Monte Carlo Frameworks
Download Monte Carlo Frameworks full books in PDF, epub, and Kindle. Read online free Monte Carlo Frameworks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Daniel J. Duffy |
Publisher | : John Wiley & Sons |
Total Pages | : 775 |
Release | : 2011-08-02 |
Genre | : Business & Economics |
ISBN | : 0470684062 |
This is one of the first books that describe all the steps that are needed in order to analyze, design and implement Monte Carlo applications. It discusses the financial theory as well as the mathematical and numerical background that is needed to write flexible and efficient C++ code using state-of-the art design and system patterns, object-oriented and generic programming models in combination with standard libraries and tools. Includes a CD containing the source code for all examples. It is strongly advised that you experiment with the code by compiling it and extending it to suit your needs. Support is offered via a user forum on www.datasimfinancial.com where you can post queries and communicate with other purchasers of the book. This book is for those professionals who design and develop models in computational finance. This book assumes that you have a working knowledge of C ++.
Author | : Christian Robert |
Publisher | : Springer Science & Business Media |
Total Pages | : 297 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 1441915753 |
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
Author | : Antoine Savine |
Publisher | : John Wiley & Sons |
Total Pages | : 592 |
Release | : 2018-11-20 |
Genre | : Mathematics |
ISBN | : 1119539455 |
Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.
Author | : Paul Glasserman |
Publisher | : Springer Science & Business Media |
Total Pages | : 603 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 0387216170 |
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Author | : Jun S. Liu |
Publisher | : Springer Science & Business Media |
Total Pages | : 350 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 0387763716 |
This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.
Author | : Adrian Barbu |
Publisher | : Springer Nature |
Total Pages | : 433 |
Release | : 2020-02-24 |
Genre | : Mathematics |
ISBN | : 9811329710 |
This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.
Author | : Nicolas Chopin |
Publisher | : Springer Nature |
Total Pages | : 390 |
Release | : 2020-10-01 |
Genre | : Mathematics |
ISBN | : 3030478459 |
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.
Author | : Bruno Dupire |
Publisher | : |
Total Pages | : 341 |
Release | : 1998 |
Genre | : Derivative securities |
ISBN | : 9781899332915 |
A core reference of classic research and new writing on the methodologies and applications of Monte Carlo simulation.
Author | : A. Dubi |
Publisher | : John Wiley & Sons |
Total Pages | : 294 |
Release | : 2000-01-21 |
Genre | : Mathematics |
ISBN | : |
Author | : Michael C. Fu |
Publisher | : Springer Science & Business Media |
Total Pages | : 411 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461562937 |
Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing and inventory, and to other diverse areas such as financial derivatives, pricing and statistical quality control. To researchers already in the area, this book offers a unified perspective and adequately summarizes the state of the art. To researchers new to the area, this book offers a more systematic and accessible means of understanding the techniques without having to scour through the immense literature and learn a new set of notation with each paper. To practitioners, this book provides a number of diverse application areas that makes the intuition accessible without having to fully commit to understanding all the theoretical niceties. In sum, the objectives of this monograph are two-fold: to bring together many of the interesting developments in perturbation analysis based on conditioning under a more unified framework, and to illustrate the diversity of applications to which these techniques can be applied. Conditional Monte Carlo: Gradient Estimation and Optimization Applications is suitable as a secondary text for graduate level courses on stochastic simulations, and as a reference for researchers and practitioners in industry.