Monodromy In Problems Of Algebraic Geometry And Differential Equations
Download Monodromy In Problems Of Algebraic Geometry And Differential Equations full books in PDF, epub, and Kindle. Read online free Monodromy In Problems Of Algebraic Geometry And Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Henryk Zoladek |
Publisher | : Springer Science & Business Media |
Total Pages | : 589 |
Release | : 2006-08-10 |
Genre | : Mathematics |
ISBN | : 3764375361 |
In singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. There is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. In covering these and other topics, this book underlines the unifying role of the monogropy group.
Author | : A. A. Bolibrukh |
Publisher | : |
Total Pages | : 222 |
Release | : 2002 |
Genre | : Differential equations, Nonlinear |
ISBN | : |
Author | : Marius van der Put |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642557503 |
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
Author | : James Carlson |
Publisher | : Cambridge University Press |
Total Pages | : 577 |
Release | : 2017-08-24 |
Genre | : Mathematics |
ISBN | : 1108422624 |
An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.
Author | : Takahiro Kawai |
Publisher | : American Mathematical Soc. |
Total Pages | : 148 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 9780821835470 |
The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.
Author | : Rick Miranda |
Publisher | : American Mathematical Soc. |
Total Pages | : 414 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : 0821802682 |
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Author | : Nicholas M. Katz |
Publisher | : Princeton University Press |
Total Pages | : 448 |
Release | : 1990-09-21 |
Genre | : Mathematics |
ISBN | : 9780691085999 |
This book is concerned with two areas of mathematics, at first sight disjoint, and with some of the analogies and interactions between them. These areas are the theory of linear differential equations in one complex variable with polynomial coefficients, and the theory of one parameter families of exponential sums over finite fields. After reviewing some results from representation theory, the book discusses results about differential equations and their differential galois groups (G) and one-parameter families of exponential sums and their geometric monodromy groups (G). The final part of the book is devoted to comparison theorems relating G and G of suitably "corresponding" situations, which provide a systematic explanation of the remarkable "coincidences" found "by hand" in the hypergeometric case.
Author | : Phillip A. Griffiths |
Publisher | : Princeton University Press |
Total Pages | : 328 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 140088165X |
A classic treatment of transcendental algebraic geometry from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.
Author | : A. M. Vinogradov |
Publisher | : American Mathematical Soc. |
Total Pages | : 268 |
Release | : 2001-10-16 |
Genre | : Mathematics |
ISBN | : 9780821897997 |
This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".
Author | : Alexandru Buium |
Publisher | : American Mathematical Soc. |
Total Pages | : 357 |
Release | : 2017-06-09 |
Genre | : Mathematics |
ISBN | : 147043623X |
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.