Moments of Linear Positive Operators and Approximation

Moments of Linear Positive Operators and Approximation
Author: Vijay Gupta
Publisher: Springer
Total Pages: 102
Release: 2019-05-25
Genre: Mathematics
ISBN: 3030194558

This book is a valuable resource for Graduate students and researchers interested in current techniques and methods within the theory of moments in linear positive operators and approximation theory. Moments are essential to the convergence of a sequence of linear positive operators. Several methods are examined to determine moments including direct calculations, recurrence relations, and the application of hypergeometric series. A collection of operators in the theory of approximation are investigated through their moments and a variety of results are surveyed with fundamental theories and recent developments. Detailed examples are included to assist readers understand vital theories and potential applications.

Moments of Linear Positive Operators and Approximation

Moments of Linear Positive Operators and Approximation
Author: Vijay Gupta
Publisher: Springer
Total Pages: 96
Release: 2019-05-28
Genre: Mathematics
ISBN: 9783030194543

This book is a valuable resource for Graduate students and researchers interested in current techniques and methods within the theory of moments in linear positive operators and approximation theory. Moments are essential to the convergence of a sequence of linear positive operators. Several methods are examined to determine moments including direct calculations, recurrence relations, and the application of hypergeometric series. A collection of operators in the theory of approximation are investigated through their moments and a variety of results are surveyed with fundamental theories and recent developments. Detailed examples are included to assist readers understand vital theories and potential applications.

Approximation Theory Using Positive Linear Operators

Approximation Theory Using Positive Linear Operators
Author: Radu Paltanea
Publisher: Springer Science & Business Media
Total Pages: 208
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461220580

Offers an examination of the multivariate approximation case Special focus on the Bernstein operators, including applications, and on two new classes of Bernstein-type operators Many general estimates, leaving room for future applications (e.g. the B-spline case) Extensions to approximation operators acting on spaces of vector functions Historical perspective in the form of previous significant results

Recent Advances in Constructive Approximation Theory

Recent Advances in Constructive Approximation Theory
Author: Vijay Gupta
Publisher: Springer
Total Pages: 295
Release: 2018-07-06
Genre: Mathematics
ISBN: 3319921657

This book presents an in-depth study on advances in constructive approximation theory with recent problems on linear positive operators. State-of-the-art research in constructive approximation is treated with extensions to approximation results on linear positive operators in a post quantum and bivariate setting. Methods, techniques, and problems in approximation theory are demonstrated with applications to optimization, physics, and biology. Graduate students, research scientists and engineers working in mathematics, physics, and industry will broaden their understanding of operators essential to pure and applied mathematics. Topics discussed include: discrete operators, quantitative estimates, post-quantum calculus, integral operators, univariate Gruss-type inequalities for positive linear operators, bivariate operators of discrete and integral type, convergence of GBS operators.

Computation and Approximation

Computation and Approximation
Author: Vijay Gupta
Publisher: Springer Nature
Total Pages: 107
Release: 2021-11-29
Genre: Mathematics
ISBN: 3030855635

This brief studies recent work conducted on certain exponential type operators and other integral type operators. It consists of three chapters: the first on exponential type operators, the second a study of some modifications of linear positive operators, and the third on difference estimates between two operators. It will be of interest to students both graduate and undergraduate studying linear positive operators and the area of approximation theory.

Approximation Theory, Sequence Spaces and Applications

Approximation Theory, Sequence Spaces and Applications
Author: S. A. Mohiuddine
Publisher: Springer Nature
Total Pages: 277
Release: 2022-12-07
Genre: Mathematics
ISBN: 9811961166

This book publishes original research chapters on the theory of approximation by positive linear operators as well as theory of sequence spaces and illustrates their applications. Chapters are original and contributed by active researchers in the field of approximation theory and sequence spaces. Each chapter describes the problem of current importance and summarizes ways of their solution and possible applications which improve the current understanding pertaining to sequence spaces and approximation theory. The presentation of the articles is clear and self-contained throughout the book.

Approximation with Positive Linear Operators and Linear Combinations

Approximation with Positive Linear Operators and Linear Combinations
Author: Vijay Gupta
Publisher: Springer
Total Pages: 193
Release: 2017-06-27
Genre: Mathematics
ISBN: 3319587951

This book presents a systematic overview of approximation by linear combinations of positive linear operators, a useful tool used to increase the order of approximation. Fundamental and recent results from the past decade are described with their corresponding proofs. The volume consists of eight chapters that provide detailed insight into the representation of monomials of the operators Ln , direct and inverse estimates for a broad class of positive linear operators, and case studies involving finite and unbounded intervals of real and complex functions. Strong converse inequalities of Type A in terminology of Ditzian–Ivanov for linear combinations of Bernstein and Bernstein–Kantorovich operators and various Voronovskaja-type estimates for some linear combinations are analyzed and explained. Graduate students and researchers in approximation theory will find the list of open problems in approximation of linear combinations useful. The book serves as a reference for graduate and postgraduate courses as well as a basis for future study and development.

Computational Mathematics and Variational Analysis

Computational Mathematics and Variational Analysis
Author: Nicholas J. Daras
Publisher: Springer Nature
Total Pages: 564
Release: 2020-06-06
Genre: Mathematics
ISBN: 3030446255

This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.

Convexity, Extension of Linear Operators, Approximation and Applications

Convexity, Extension of Linear Operators, Approximation and Applications
Author: Octav Olteanu
Publisher: Cambridge Scholars Publishing
Total Pages: 180
Release: 2022-07-26
Genre: Mathematics
ISBN: 1527585050

This book emphasizes some basic results in functional and classical analysis, including Hahn-Banach-type theorems, the Markov moment problem, polynomial approximation on unbounded subsets, convexity and convex optimization, elements of operator theory, a global method for convex monotone operators and a connection with the contraction principle. It points out the connection between linear continuous operators and convex continuous operators, and establishes their relationships with other fields of mathematics and physics. The book will appeal to students, PhD aspirants, researchers, professors, engineers, and any reader interested in mathematical analysis or its applications.

Anniversary Volume on Approximation Theory and Functional Analysis

Anniversary Volume on Approximation Theory and Functional Analysis
Author: P. L. Butzer
Publisher: Birkhäuser
Total Pages: 601
Release: 2013-11-21
Genre: Science
ISBN: 3034854323

These Proceedings include 42 of the 49 invited conference papers, three papers sub mitted subsequently, and a report devoted to new and unsolved problems based on two special problem sessions and as augmented by later communications from the participants. In addition, there are four short accounts that emphasize the personality of the scholars to whom the proceedings are dedicated. Due to the large number of contributors, the length of the papers had to be restricted. This volume is again devoted to recent significant results obtained in approximation theory, harmonic analysis, functional analysis, and operator theory. The papers solicited include in addition survey articles that not only describe fundamental advances in their subfields, but many also emphasize basic interconnections between the various research areas. They tend to reflect the range of interests of the organizers and of their immediate colleagues and collaborators. The papers have been grouped according to subject matter into ten chapters. Chap ter I, on operator theory, is devoted to certain classes of operators such as contraction, hyponormal, and accretive operators, as well as to suboperators and semi groups of operators. Chapter II, on functional analysis, contains papers on function spaces, algebras, ideals, and generalized functions. Chapter III, on abstract approximation, is concerned with the comparison of approximation processes, the gliding hump method, certain inter polation spaces, and n-widths.