Moduli Spaces of Curves, Mapping Class Groups and Field Theory

Moduli Spaces of Curves, Mapping Class Groups and Field Theory
Author: Xavier Buff
Publisher: American Mathematical Soc.
Total Pages: 144
Release: 2003
Genre: Mathematics
ISBN: 0821831674

It concludes with a study of the canonical Galois action on the fundamental groupoids, computed using Grothendick-Teichmuller theory. Finally, Chapter 3 studies strict ribbon categories, which are closely related to braided tensor categories: here they are used to construct invariants of 3-manifolds which in turn give rise to quantum field theories."--BOOK JACKET.

Problems on Mapping Class Groups and Related Topics

Problems on Mapping Class Groups and Related Topics
Author: Benson Farb
Publisher: American Mathematical Soc.
Total Pages: 384
Release: 2006-09-12
Genre: Mathematics
ISBN: 0821838385

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.

Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces
Author: Benson Farb
Publisher: American Mathematical Soc.
Total Pages: 371
Release: 2013-08-16
Genre: Mathematics
ISBN: 0821898876

Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

The Moduli Space of Curves

The Moduli Space of Curves
Author: Robert H. Dijkgraaf
Publisher: Springer Science & Business Media
Total Pages: 570
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461242649

The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.

A Primer on Mapping Class Groups

A Primer on Mapping Class Groups
Author: Benson Farb
Publisher: Princeton University Press
Total Pages: 490
Release: 2012
Genre: Mathematics
ISBN: 0691147949

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.

Progress in Galois Theory

Progress in Galois Theory
Author: Helmut Voelklein
Publisher: Springer Science & Business Media
Total Pages: 174
Release: 2006-08-10
Genre: Mathematics
ISBN: 0387235345

The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own course, which led to great advances in the latter half of the 20th cen tury. It was John Thompson who shaped finite group theory like no-one else, leading the way towards a major milestone of 20th century mathematics, the classification of finite simple groups. After the classification was announced around 1980, it was again J. Thomp son who led the way in exploring its implications for Galois theory. The first question is whether all simple groups occur as Galois groups over the rationals (and related fields), and secondly, how can this be used to show that all finite groups occur (the 'Inverse Problem of Galois Theory'). What are the implica tions for the stmcture and representations of the absolute Galois group of the rationals (and other fields)? Various other applications to algebra and number theory have been found, most prominently, to the theory of algebraic curves (e.g., the Guralnick-Thompson Conjecture on the Galois theory of covers of the Riemann sphere).

Topology, Geometry And Field Theory - Proceedings Of The 31st International Taniguchi Symposium And Proceedings Of The Conference

Topology, Geometry And Field Theory - Proceedings Of The 31st International Taniguchi Symposium And Proceedings Of The Conference
Author: Kenji Fukaya
Publisher: World Scientific
Total Pages: 266
Release: 1994-08-31
Genre:
ISBN: 9814550647

Nobel Symposium 129 on Neutrino Physics was held at Haga Slott in Enköping, Sweden during August 19-24, 2004. Invited to the symposium were around 40 globally leading researchers in the field of neutrino physics, both experimental and theoretical.The dominant theme of the lectures was neutrino oscillations, which after several years were recently verified by results from the Super-Kamiokande detector in Kamioka, Japan and the SNO detector in Sudbury, Canada. Discussion focused especially on effects of neutrino oscillations derived from the presence of matter and the fact that three different neutrinos exist. Since neutrino oscillations imply that neutrinos have mass, this is the first experimental observation that fundamentally deviates from the standard model of particle physics. This is a challenge to both theoretical and experimental physics. The various oscillation parameters will be determined with increased precision in new, specially designed experiments. Theoretical physics is working intensively to insert the knowledge that neutrinos have mass into the theoretical models that describe particle physics. The lectures provided a very good description of the intensive situation in the field right now. The topics discussed also included mass models for neutrinos, neutrinos in extra dimensions as well as the “seesaw mechanism,” which provides a good description of why neutrino masses are so small.This book is A4 size and in full color.

Mapping Class Groups and Moduli Spaces of Riemann Surfaces

Mapping Class Groups and Moduli Spaces of Riemann Surfaces
Author: Carl-Friedrich Bödigheimer
Publisher: American Mathematical Soc.
Total Pages: 394
Release: 1993
Genre: Mathematics
ISBN: 0821851675

The study of mapping class groups and moduli spaces of compact Riemann surfaces is currently a central topic in topology, algebraic geometry, and conformal field theory. This book contains proceedings from two workshops held in the summer of 1991, one at the University of G\"ottingen and the other at the University of Washington at Seattle. The papers gathered here represent diverse approaches and contain several important new results. With both research and survey articles, the book appeals to mathematicians and physicists.

Graphs and Patterns in Mathematics and Theoretical Physics

Graphs and Patterns in Mathematics and Theoretical Physics
Author: Mikhail Lyubich
Publisher: American Mathematical Soc.
Total Pages: 443
Release: 2005
Genre: Mathematics
ISBN: 0821836668

The Stony Brook Conference, "Graphs and Patterns in Mathematics and Theoretical Physics", was dedicated to Dennis Sullivan in honor of his sixtieth birthday. The event's scientific content, which was suggested by Sullivan, was largely based on mini-courses and survey lectures. The main idea was to help researchers and graduate students in mathematics and theoretical physics who encounter graphs in their research to overcome conceptual barriers. The collection begins with Sullivan's paper, "Sigma models and string topology," which describes a background algebraic structure for the sigma model based on algebraic topology and transversality. Other contributions to the volume were organized into five sections: Feynman Diagrams, Algebraic Structures, Manifolds: Invariants and Mirror Symmetry, Combinatorial Aspects of Dynamics, and Physics. These sections, along with more research-oriented articles, contain the following surveys: "Feynman diagrams for pedestrians and mathematicians" by M. Polyak, "Notes on universal algebra" by A. Voronov, "Unimodal maps and hierarchical models" by M. Yampolsky, and "Quantum geometry in action: big bang and black holes" by A. Ashtekar. This comprehensive volume is suitable for graduate students and research mathematicians interested in graph theory and its applications in mathematics and physics.

Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics

Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics
Author: Aaron Wootton
Publisher: American Mathematical Society
Total Pages: 366
Release: 2022-02-03
Genre: Mathematics
ISBN: 1470460254

Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in part to great advances in computer algebra systems and progress in finite group theory. This volume provides a concise but thorough introduction for newcomers to the area while at the same time highlighting new developments for established researchers. The volume starts with two expository articles. The first of these articles gives a historical perspective of the field with an emphasis on highly symmetric surfaces, such as Hurwitz surfaces. The second expository article focuses on the future of the field, outlining some of the more popular topics in recent years and providing 78 open research problems across all topics. The remaining articles showcase new developments in the area and have specifically been chosen to cover a variety of topics to illustrate the range of diversity within the field.