Optimal Control Systems

Optimal Control Systems
Author: D. Subbaram Naidu
Publisher: CRC Press
Total Pages: 476
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 1351830317

The theory of optimal control systems has grown and flourished since the 1960's. Many texts, written on varying levels of sophistication, have been published on the subject. Yet even those purportedly designed for beginners in the field are often riddled with complex theorems, and many treatments fail to include topics that are essential to a thorough grounding in the various aspects of and approaches to optimal control. Optimal Control Systems provides a comprehensive but accessible treatment of the subject with just the right degree of mathematical rigor to be complete but practical. It provides a solid bridge between "traditional" optimization using the calculus of variations and what is called "modern" optimal control. It also treats both continuous-time and discrete-time optimal control systems, giving students a firm grasp on both methods. Among this book's most outstanding features is a summary table that accompanies each topic or problem and includes a statement of the problem with a step-by-step solution. Students will also gain valuable experience in using industry-standard MATLAB and SIMULINK software, including the Control System and Symbolic Math Toolboxes. Diverse applications across fields from power engineering to medicine make a foundation in optimal control systems an essential part of an engineer's background. This clear, streamlined presentation is ideal for a graduate level course on control systems and as a quick reference for working engineers.

A Primer on the Calculus of Variations and Optimal Control Theory

A Primer on the Calculus of Variations and Optimal Control Theory
Author: Mike Mesterton-Gibbons
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2009
Genre: Mathematics
ISBN: 0821847724

The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.

H∞-Optimal Control and Related Minimax Design Problems

H∞-Optimal Control and Related Minimax Design Problems
Author: Tamer Başar
Publisher: Springer Science & Business Media
Total Pages: 417
Release: 2009-05-21
Genre: Science
ISBN: 0817647570

This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.

Optimal Control Theory

Optimal Control Theory
Author: Donald E. Kirk
Publisher: Courier Corporation
Total Pages: 466
Release: 2012-04-26
Genre: Technology & Engineering
ISBN: 0486135071

Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.

Optimal Control

Optimal Control
Author: Richard Vinter
Publisher: Springer Science & Business Media
Total Pages: 523
Release: 2010-06-25
Genre: Science
ISBN: 0817680861

“Each chapter contains a well-written introduction and notes. They include the author's deep insights on the subject matter and provide historical comments and guidance to related literature. This book may well become an important milestone in the literature of optimal control." —Mathematical Reviews “Thanks to a great effort to be self-contained, [this book] renders accessibly the subject to a wide audience. Therefore, it is recommended to all researchers and professionals interested in Optimal Control and its engineering and economic applications. It can serve as an excellent textbook for graduate courses in Optimal Control (with special emphasis on Nonsmooth Analysis)." —Automatica

Modern Control Systems

Modern Control Systems
Author: Saurabh Mani Tripathi
Publisher: Jones & Bartlett Publishers
Total Pages: 238
Release: 2008
Genre: Science
ISBN: 1934015210

Providing a lucid introduction to modern control systems topics, this book has been designed as a short course on control systems or as a review for the professional engineer. Five chapters have been written to emphasize concepts & provide basic mathematical derivations. CD-ROM with MATLAB applications included.

Mathematical Control Theory

Mathematical Control Theory
Author: Eduardo D. Sontag
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2013-11-21
Genre: Mathematics
ISBN: 1461205778

Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.

Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
Total Pages: 255
Release: 2012
Genre: Mathematics
ISBN: 0691151873

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

Linear Optimal Control Systems

Linear Optimal Control Systems
Author: Huibert Kwakernaak
Publisher: Wiley-Interscience
Total Pages: 630
Release: 1972-11-10
Genre: Science
ISBN:

"This book attempts to reconcile modern linear control theory with classical control theory. One of the major concerns of this text is to present design methods, employing modern techniques, for obtaining control systems that stand up to the requirements that have been so well developed in the classical expositions of control theory. Therefore, among other things, an entire chapter is devoted to a description of the analysis of control systems, mostly following the classical lines of thought. In the later chapters of the book, in which modern synthesis methods are developed, the chapter on analysis is recurrently referred to. Furthermore, special attention is paid to subjects that are standard in classical control theory but are frequently overlooked in modern treatments, such as nonzero set point control systems, tracking systems, and control systems that have to cope with constant disturbances. Also, heavy emphasis is placed upon the stochastic nature of control problems because the stochastic aspects are so essential." --Preface.

Optimal Control and Estimation

Optimal Control and Estimation
Author: Robert F. Stengel
Publisher: Courier Corporation
Total Pages: 674
Release: 2012-10-16
Genre: Mathematics
ISBN: 0486134814

Graduate-level text provides introduction to optimal control theory for stochastic systems, emphasizing application of basic concepts to real problems. "Invaluable as a reference for those already familiar with the subject." — Automatica.