Modern Multivariate Statistical Techniques

Modern Multivariate Statistical Techniques
Author: Alan J. Izenman
Publisher: Springer Science & Business Media
Total Pages: 757
Release: 2009-03-02
Genre: Mathematics
ISBN: 0387781897

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

Modern Multivariate Statistical Techniques

Modern Multivariate Statistical Techniques
Author: Alan J. Izenman
Publisher: Springer
Total Pages: 733
Release: 2013-03-11
Genre: Mathematics
ISBN: 9780387781884

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

Modern Statistical Methods for Spatial and Multivariate Data

Modern Statistical Methods for Spatial and Multivariate Data
Author: Norou Diawara
Publisher: Springer
Total Pages: 184
Release: 2019-06-29
Genre: Mathematics
ISBN: 3030114317

This contributed volume features invited papers on current models and statistical methods for spatial and multivariate data. With a focus on recent advances in statistics, topics include spatio-temporal aspects, classification techniques, the multivariate outcomes with zero and doubly-inflated data, discrete choice modelling, copula distributions, and feasible algorithmic solutions. Special emphasis is placed on applications such as the use of spatial and spatio-temporal models for rainfall in South Carolina and the multivariate sparse areal mixed model for the Census dataset for the state of Iowa. Articles use simulated and aggregated data examples to show the flexibility and wide applications of proposed techniques. Carefully peer-reviewed and pedagogically presented for a broad readership, this volume is suitable for graduate and postdoctoral students interested in interdisciplinary research. Researchers in applied statistics and sciences will find this book an important resource on the latest developments in the field. In keeping with the STEAM-H series, the editors hope to inspire interdisciplinary understanding and collaboration.

Multivariate Statistics:

Multivariate Statistics:
Author: Wolfgang Härdle
Publisher: Springer Science & Business Media
Total Pages: 367
Release: 2007-07-27
Genre: Computers
ISBN: 0387707840

The authors have cleverly used exercises and their solutions to explore the concepts of multivariate data analysis. Broken down into three sections, this book has been structured to allow students in economics and finance to work their way through a well formulated exploration of this core topic. The first part of this book is devoted to graphical techniques. The second deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The final section contains a wide variety of exercises in applied multivariate data analysis.

Applied Statistics and Multivariate Data Analysis for Business and Economics

Applied Statistics and Multivariate Data Analysis for Business and Economics
Author: Thomas Cleff
Publisher: Springer
Total Pages: 488
Release: 2019-07-10
Genre: Business & Economics
ISBN: 303017767X

This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.

Applying Contemporary Statistical Techniques

Applying Contemporary Statistical Techniques
Author: Rand R. Wilcox
Publisher: Gulf Professional Publishing
Total Pages: 688
Release: 2003-01-06
Genre: Mathematics
ISBN: 9780127515410

Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible. Highlights: * Assumes no previous training in statistics * Explains when and why modern methods provide more accurate results * Provides simple descriptions of when and why conventional methods can be highly unsatisfactory * Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques "The book is quite unique in that it offers a lot of up-to-date statistical tools. No other book at this level comes close in this aspect." Xuming He -University of Illinois, Urbana

Modern Applied Statistics with S-PLUS

Modern Applied Statistics with S-PLUS
Author: William N. Venables
Publisher: Springer Science & Business Media
Total Pages: 562
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475727194

A guide to using the power of S-PLUS to perform statistical analyses, providing both an introduction to the program and a course in modern statistical methods. Readers are assumed to have a basic grounding in statistics, thus the book is intended for would-be users, as well as students and researchers using statistics. Throughout, the emphasis is on presenting practical problems and full analyses of real data sets, with many of the methods discussed being modern approaches to topics such as linear and non-linear regression models, robust and smooth regression methods, survival analysis, multivariate analysis, tree-based methods, time series, spatial statistics, and classification. This second edition is intended for users of S-PLUS 3.3, or later, and covers both Windows and UNIX. It treats the recent developments in graphics and new statistical functionality, including bootstraping, mixed effects linear and non-linear models, factor analysis, and regression with autocorrelated errors. The authors have written several software libraries which enhance S-PLUS, and these, plus all the datasets used, are available on the Internet.

Modern Directional Statistics

Modern Directional Statistics
Author: Christophe Ley
Publisher: CRC Press
Total Pages: 233
Release: 2017-08-03
Genre: Computers
ISBN: 1351645781

Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.

Modern Statistics with R

Modern Statistics with R
Author: Måns Thulin
Publisher:
Total Pages: 0
Release: 2024
Genre: Mathematics
ISBN: 9781032497457

The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Modern Statistical Methods for Astronomy

Modern Statistical Methods for Astronomy
Author: Eric D. Feigelson
Publisher: Cambridge University Press
Total Pages: 495
Release: 2012-07-12
Genre: Science
ISBN: 052176727X

Modern Statistical Methods for Astronomy: With R Applications.