Modern Differential Geometry In Gauge Theories
Download Modern Differential Geometry In Gauge Theories full books in PDF, epub, and Kindle. Read online free Modern Differential Geometry In Gauge Theories ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anastasios Mallios |
Publisher | : Springer Science & Business Media |
Total Pages | : 303 |
Release | : 2006-07-27 |
Genre | : Mathematics |
ISBN | : 0817644741 |
This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable
Author | : M. Göckeler |
Publisher | : Cambridge University Press |
Total Pages | : 248 |
Release | : 1989-07-28 |
Genre | : Mathematics |
ISBN | : 9780521378215 |
Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.
Author | : David Bleecker |
Publisher | : Courier Corporation |
Total Pages | : 202 |
Release | : 2005-12-10 |
Genre | : Science |
ISBN | : 0486445461 |
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas. Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field equation. Additional topics include free Dirac electron fields; interactions; calculus on frame bundle; and unification of gauge fields and gravitation. The text concludes with references, a selected bibliography, an index of notation, and a general index.
Author | : Marián Fecko |
Publisher | : Cambridge University Press |
Total Pages | : 11 |
Release | : 2006-10-12 |
Genre | : Science |
ISBN | : 1139458035 |
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.
Author | : Anastasios Mallios |
Publisher | : Springer Science & Business Media |
Total Pages | : 244 |
Release | : 2009-10-22 |
Genre | : Mathematics |
ISBN | : 0817646345 |
Original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable
Author | : Gerd Rudolph |
Publisher | : Springer Science & Business Media |
Total Pages | : 766 |
Release | : 2012-11-09 |
Genre | : Science |
ISBN | : 9400753454 |
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
Author | : Mark J.D. Hamilton |
Publisher | : Springer |
Total Pages | : 667 |
Release | : 2017-12-06 |
Genre | : Mathematics |
ISBN | : 3319684396 |
The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of differentiable manifolds and special relativity is required, summarized in the appendix.
Author | : Bernard F. Schutz |
Publisher | : Cambridge University Press |
Total Pages | : 272 |
Release | : 1980-01-28 |
Genre | : Science |
ISBN | : 1107268141 |
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Author | : Eckehard W. Mielke |
Publisher | : Springer |
Total Pages | : 377 |
Release | : 2017-01-22 |
Genre | : Science |
ISBN | : 3319297341 |
This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter type gauge theory in the spirit of Yang-Mills, some new progress in its topological form is presented. After symmetry breaking, Einstein’s standard general relativity with cosmological constant emerges as a classical background. The geometrical structure of BRST quantization with non-propagating topological ghosts is developed in some detail.
Author | : M. Crampin |
Publisher | : Cambridge University Press |
Total Pages | : 408 |
Release | : 1986 |
Genre | : Mathematics |
ISBN | : 9780521231909 |
An introduction to geometrical topics used in applied mathematics and theoretical physics.