Modern Differential Geometry for Physicists
Author | : Chris J. Isham |
Publisher | : Allied Publishers |
Total Pages | : 308 |
Release | : 2002 |
Genre | : Geometry, Differential |
ISBN | : 9788177643169 |
Download Modern Differential Geometry For Physicists full books in PDF, epub, and Kindle. Read online free Modern Differential Geometry For Physicists ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Chris J. Isham |
Publisher | : Allied Publishers |
Total Pages | : 308 |
Release | : 2002 |
Genre | : Geometry, Differential |
ISBN | : 9788177643169 |
Author | : Bo-yu Hou |
Publisher | : World Scientific Publishing Company |
Total Pages | : 561 |
Release | : 1997-10-31 |
Genre | : Science |
ISBN | : 9813105097 |
This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.
Author | : Marián Fecko |
Publisher | : Cambridge University Press |
Total Pages | : 11 |
Release | : 2006-10-12 |
Genre | : Science |
ISBN | : 1139458035 |
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.
Author | : Anastasios Mallios |
Publisher | : Springer Science & Business Media |
Total Pages | : 303 |
Release | : 2006-07-27 |
Genre | : Mathematics |
ISBN | : 0817644741 |
This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable
Author | : Peter Szekeres |
Publisher | : Cambridge University Press |
Total Pages | : 620 |
Release | : 2004-12-16 |
Genre | : Mathematics |
ISBN | : 9780521829601 |
This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.
Author | : Theodore Frankel |
Publisher | : Cambridge University Press |
Total Pages | : 749 |
Release | : 2011-11-03 |
Genre | : Mathematics |
ISBN | : 1139505610 |
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.
Author | : M. Göckeler |
Publisher | : Cambridge University Press |
Total Pages | : 248 |
Release | : 1989-07-28 |
Genre | : Mathematics |
ISBN | : 9780521378215 |
Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.
Author | : Bernard F. Schutz |
Publisher | : Cambridge University Press |
Total Pages | : 272 |
Release | : 1980-01-28 |
Genre | : Science |
ISBN | : 1107268141 |
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Author | : José G. Vargas |
Publisher | : World Scientific Publishing Company Incorporated |
Total Pages | : 293 |
Release | : 2014 |
Genre | : Mathematics |
ISBN | : 9789814566391 |
I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells
Author | : Gabriel Lugo |
Publisher | : |
Total Pages | : 372 |
Release | : 2021-10-15 |
Genre | : |
ISBN | : 9781469669250 |
Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https: //openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.