Modeling Time in Computing

Modeling Time in Computing
Author: Carlo A. Furia
Publisher: Springer Science & Business Media
Total Pages: 430
Release: 2012-10-19
Genre: Computers
ISBN: 3642323316

Models that include a notion of time are ubiquitous in disciplines such as the natural sciences, engineering, philosophy, and linguistics, but in computing the abstractions provided by the traditional models are problematic and the discipline has spawned many novel models. This book is a systematic thorough presentation of the results of several decades of research on developing, analyzing, and applying time models to computing and engineering. After an opening motivation introducing the topics, structure and goals, the authors introduce the notions of formalism and model in general terms along with some of their fundamental classification criteria. In doing so they present the fundamentals of propositional and predicate logic, and essential issues that arise when modeling time across all types of system. Part I is a summary of the models that are traditional in engineering and the natural sciences, including fundamental computer science: dynamical systems and control theory; hardware design; and software algorithmic and complexity analysis. Part II covers advanced and specialized formalisms dealing with time modeling in heterogeneous software-intensive systems: formalisms that share finite state machines as common “ancestors”; Petri nets in many variants; notations based on mathematical logic, such as temporal logic; process algebras; and “dual-language approaches” combining two notations with different characteristics to model and verify complex systems, e.g., model-checking frameworks. Finally, the book concludes with summarizing remarks and hints towards future developments and open challenges. The presentation uses a rigorous, yet not overly technical, style, appropriate for readers with heterogeneous backgrounds, and each chapter is supplemented with detailed bibliographic remarks and carefully chosen exercises of varying difficulty and scope. The book is aimed at graduate students and researchers in computer science, while researchers and practitioners in other scientific and engineering disciplines interested in time modeling with a computational flavor will also find the book of value, and the comparative and conceptual approach makes this a valuable introduction for non-experts. The authors assume a basic knowledge of calculus, probability theory, algorithms, and programming, while a more advanced knowledge of automata, formal languages, and mathematical logic is useful.

Modeling Time in Computing

Modeling Time in Computing
Author: Carlo A. Furia
Publisher: Springer Science & Business Media
Total Pages: 430
Release: 2012-10-19
Genre: Computers
ISBN: 3642323324

Models that include a notion of time are ubiquitous in disciplines such as the natural sciences, engineering, philosophy, and linguistics, but in computing the abstractions provided by the traditional models are problematic and the discipline has spawned many novel models. This book is a systematic thorough presentation of the results of several decades of research on developing, analyzing, and applying time models to computing and engineering. After an opening motivation introducing the topics, structure and goals, the authors introduce the notions of formalism and model in general terms along with some of their fundamental classification criteria. In doing so they present the fundamentals of propositional and predicate logic, and essential issues that arise when modeling time across all types of system. Part I is a summary of the models that are traditional in engineering and the natural sciences, including fundamental computer science: dynamical systems and control theory; hardware design; and software algorithmic and complexity analysis. Part II covers advanced and specialized formalisms dealing with time modeling in heterogeneous software-intensive systems: formalisms that share finite state machines as common “ancestors”; Petri nets in many variants; notations based on mathematical logic, such as temporal logic; process algebras; and “dual-language approaches” combining two notations with different characteristics to model and verify complex systems, e.g., model-checking frameworks. Finally, the book concludes with summarizing remarks and hints towards future developments and open challenges. The presentation uses a rigorous, yet not overly technical, style, appropriate for readers with heterogeneous backgrounds, and each chapter is supplemented with detailed bibliographic remarks and carefully chosen exercises of varying difficulty and scope. The book is aimed at graduate students and researchers in computer science, while researchers and practitioners in other scientific and engineering disciplines interested in time modeling with a computational flavor will also find the book of value, and the comparative and conceptual approach makes this a valuable introduction for non-experts. The authors assume a basic knowledge of calculus, probability theory, algorithms, and programming, while a more advanced knowledge of automata, formal languages, and mathematical logic is useful.

[email protected]

Models@run.time
Author: Nelly Bencomo
Publisher: Springer
Total Pages: 319
Release: 2014-07-18
Genre: Computers
ISBN: 9783319089140

Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on [email protected] held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.

Performance Modeling and Design of Computer Systems

Performance Modeling and Design of Computer Systems
Author: Mor Harchol-Balter
Publisher: Cambridge University Press
Total Pages: 573
Release: 2013-02-18
Genre: Computers
ISBN: 1107027500

Written with computer scientists and engineers in mind, this book brings queueing theory decisively back to computer science.

Modeling with Data

Modeling with Data
Author: Ben Klemens
Publisher: Princeton University Press
Total Pages: 471
Release: 2008-10-06
Genre: Mathematics
ISBN: 1400828740

Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods. Klemens's accessible survey describes these models in a unified and nontraditional manner, providing alternative ways of looking at statistical concepts that often befuddle students. The book includes nearly one hundred sample programs of all kinds. Links to these programs will be available on this page at a later date. Modeling with Data will interest anyone looking for a comprehensive guide to these powerful statistical tools, including researchers and graduate students in the social sciences, biology, engineering, economics, and applied mathematics.

Just-in-Time Scheduling

Just-in-Time Scheduling
Author: Joanna Jozefowska
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2007-08-08
Genre: Technology & Engineering
ISBN: 038771717X

As supply chain management has matured, maintaining the precise flow of goods to manage schedules (and minimize inventories) on a just-in-time basis still presents major challenges. This has inspired an array of models and algorithms to help ensure the precise flow of components and final products into inventories to meet just-in-time requirements. This is the first survey of the theoretical work on computer systems models and algorithms utilized in just-in-time scheduling.

Real-Time Massive Model Rendering

Real-Time Massive Model Rendering
Author: Sung-eui Yoon
Publisher: Springer Nature
Total Pages: 112
Release: 2022-06-01
Genre: Mathematics
ISBN: 3031795318

Interactive display and visualization of large geometric and textured models is becoming a fundamental capability. There are numerous application areas, including games, movies, CAD, virtual prototyping, and scientific visualization. One of observations about geometric models used in interactive applications is that their model complexity continues to increase because of fundamental advances in 3D modeling, simulation, and data capture technologies. As computing power increases, users take advantage of the algorithmic advances and generate even more complex models and data sets. Therefore, there are many cases where we are required to visualize massive models that consist of hundreds of millions of triangles and, even, billions of triangles. However, interactive visualization and handling of such massive models still remains a challenge in computer graphics and visualization. In this monograph we discuss various techniques that enable interactive visualization of massive models. These techniques include visibility computation, simplification, levels-of-detail, and cache-coherent data management.We believe that the combinations of these techniques can make it possible to interactively visualize massive models in commodity hardware. Table of Contents: Introduction / Visibility / Simplification and Levels of Detail / Alternative Representations / Cache-Coherent Data Management / Conclusions / Bibliography

Modeling Discrete Time-to-Event Data

Modeling Discrete Time-to-Event Data
Author: Gerhard Tutz
Publisher: Springer
Total Pages: 252
Release: 2016-06-14
Genre: Mathematics
ISBN: 3319281585

This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.

Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation
Author: Jose Nathan Kutz
Publisher:
Total Pages: 657
Release: 2013-08-08
Genre: Computers
ISBN: 0199660336

Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.