Modeling and Solving Linear Programming with R

Modeling and Solving Linear Programming with R
Author: Jose M. Sallan
Publisher: OmniaScience
Total Pages: 108
Release: 2015-09-09
Genre: Mathematics
ISBN: 8494422936

Linear programming is one of the most extensively used techniques in the toolbox of quantitative methods of optimization. One of the reasons of the popularity of linear programming is that it allows to model a large variety of situations with a simple framework. Furthermore, a linear program is relatively easy to solve. The simplex method allows to solve most linear programs efficiently, and the Karmarkar interior-point method allows a more efficient solving of some kinds of linear programming. The power of linear programming is greatly enhanced when came the opportunity of solving integer and mixed integer linear programming. In these models all or some of the decision variables are integers, respectively. In this book we provide a brief introduction to linear programming, together with a set of exercises that introduce some applications of linear programming. We will also provide an introduction to solve linear programming in R. For each problem a possible solution through linear programming is introduced, together with the code to solve it in R and its numerical solution.

An Introduction to Linear Programming and Game Theory

An Introduction to Linear Programming and Game Theory
Author: Paul R. Thie
Publisher: John Wiley & Sons
Total Pages: 476
Release: 2011-09-15
Genre: Mathematics
ISBN: 1118165454

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.

Applied Integer Programming

Applied Integer Programming
Author: Der-San Chen
Publisher: John Wiley & Sons
Total Pages: 489
Release: 2010-01-12
Genre: Mathematics
ISBN: 0470373067

An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.

Optimization Modeling with Spreadsheets

Optimization Modeling with Spreadsheets
Author: Kenneth R. Baker
Publisher: John Wiley & Sons
Total Pages: 431
Release: 2012-01-10
Genre: Business & Economics
ISBN: 1118008979

Reflects the latest applied research and features state-of-the-art software for building and solving spreadsheet optimization models Thoroughly updated to reflect the latest topical and technical advances in the field, Optimization Modeling with Spreadsheets, Second Edition continues to focus on solving real-world optimization problems through the creation of mathematical models and the use of spreadsheets to represent and analyze those models. Developed and extensively classroom-tested by the author, the book features a systematic approach that equips readers with the skills to apply optimization tools effectively without the need to rely on specialized algorithms. This new edition uses the powerful software package Risk Solver Platform (RSP) for optimization, including its Evolutionary Solver, which employs many recently developed ideas for heuristic programming. The author provides expanded coverage of integer programming and discusses linear and nonlinear programming using a systematic approach that emphasizes the use of spreadsheet-based optimization tools. The Second Edition also features: Classifications for the various problem types, providing the reader with a broad framework for building and recognizing optimization models Network models that allow for a more general form of mass balance A systematic introduction to Data Envelopment Analysis (DEA) The identification of qualitative patterns in order to meaningfully interpret linear programming solutions An introduction to stochastic programming and the use of RSP to solve problems of this type Additional examples, exercises, and cases have been included throughout, allowing readers to test their comprehension of the material. In addition, a related website features Microsoft Office® Excel files to accompany the figures and data sets in the book. With its accessible and comprehensive presentation, Optimization Modeling with Spreadsheets, Second Edition is an excellent book for courses on deterministic models, optimization, and spreadsheet modeling at the upper-undergraduate and graduate levels. The book can also serve as a reference for researchers, practitioners, and consultants working in business, engineering, operations research, and management science.

AMPL

AMPL
Author: Robert Fourer
Publisher:
Total Pages: 351
Release: 1993
Genre: AMPL (Computer program language).
ISBN: 9780894262340

Introducing Game Theory and its Applications

Introducing Game Theory and its Applications
Author: Elliott Mendelson
Publisher: CRC Press
Total Pages: 342
Release: 2024-08-02
Genre: Mathematics
ISBN: 104009189X

This classic text, originally from the noted logician Elliot Mendelson, is intended to be an easy-to-read introduction to the basic ideas and techniques of game theory. It can be used as a class textbook or for self-study. Introducing Game Theory and its Applications, Second Edition presents an easy-to-read introduction to the basic ideas and techniques of game theory. After a brief introduction, the authors begin with a chapter devoted to combinatorial games--a topic neglected or treated minimally in most other texts. The focus then shifts to two-person zero-sum games and their solutions. Here the authors present the simplex method based on linear programming for solving these games and develop within this presentation the required background. The final chapter presents some of the fundamental ideas and tools of non-zero-sum games and games with more than two players, including an introduction to cooperative game theory. The book is suitable for a first undergraduate course in game theory, or a graduate course for students with limited previous exposure. It is useful for students who need to learn some game theory for a related subject (e.g., microeconomics) and have a limited mathematical background. It also prepares its readers for more advanced study of game theory's applications in economics, business, and the physical, biological, and social sciences. The authors hope this book breeds curiosity about the subject as its design is meant to to satisfy the readers. The book will prepare readers for deeper study of game theory applications in many fields of study.

Chemical Production Scheduling

Chemical Production Scheduling
Author: Christos T. Maravelias
Publisher: Cambridge University Press
Total Pages: 459
Release: 2021-05-06
Genre: Mathematics
ISBN: 1107154758

Understand common scheduling as well as other advanced operational problems with this valuable reference from a recognized leader in the field. Beginning with basic principles and an overview of linear and mixed-integer programming, this unified treatment introduces the fundamental ideas underpinning most modeling approaches, and will allow you to easily develop your own models. With more than 150 figures, the basic concepts and ideas behind the development of different approaches are clearly illustrated. Addresses a wide range of problems arising in diverse industrial sectors, from oil and gas to fine chemicals, and from commodity chemicals to food manufacturing. A perfect resource for engineering and computer science students, researchers working in the area, and industrial practitioners.

R for Data Science

R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
Total Pages: 521
Release: 2016-12-12
Genre: Computers
ISBN: 1491910364

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Financial Risk Modelling and Portfolio Optimization with R

Financial Risk Modelling and Portfolio Optimization with R
Author: Bernhard Pfaff
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2016-08-22
Genre: Mathematics
ISBN: 1119119677

Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.