Modeling and Inverse Problems in the Presence of Uncertainty

Modeling and Inverse Problems in the Presence of Uncertainty
Author: H. T. Banks
Publisher: CRC Press
Total Pages: 403
Release: 2014-04-01
Genre: Mathematics
ISBN: 1482206439

Modeling and Inverse Problems in the Presence of Uncertainty collects recent research-including the authors' own substantial projects-on uncertainty propagation and quantification. It covers two sources of uncertainty: where uncertainty is present primarily due to measurement errors and where uncertainty is present due to the modeling formulation i

Inverse Problems, Control and Modeling in the Presence of Uncertainty

Inverse Problems, Control and Modeling in the Presence of Uncertainty
Author: Harvey Thomas Banks
Publisher:
Total Pages: 42
Release: 2007
Genre: Inverse problems (Differential equations)
ISBN:

We report progress on the development of methods in a number of specific areas of application including static, non-cooperative games related to counter- and counter-counter-electromagnetic interrogation of targets, modeling of complex viscoelastic polymeric materials, stochastic and deterministic models for complex networks and development of inverse problem methodologies (generalized sensitivity functions; asymptotic standard errors) for estimation of infinite dimensional functional parameters including probability measures and temporal/spatial dependent functions in complex nonlinear dynamical systems. These efforts are part of our fundamental research in a modeling, estimation and control methodology (theoretical, statistical and computational) for systems in the presence of major model and observation uncertainties.

Bayesian Approach to Inverse Problems

Bayesian Approach to Inverse Problems
Author: Jérôme Idier
Publisher: John Wiley & Sons
Total Pages: 322
Release: 2013-03-01
Genre: Mathematics
ISBN: 111862369X

Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.

Groundwater Flow and Quality Modelling

Groundwater Flow and Quality Modelling
Author: E. Custodio
Publisher: Springer Science & Business Media
Total Pages: 876
Release: 1988-02-29
Genre: Science
ISBN: 9789027726551

Proceedings of the NATO Advanced Research Workshop on Advances in Analytical and Numerical Groundwater Flow and Quality Modelling, Lisbon, Portugal, June 2-6, 1987

A Taste of Inverse Problems

A Taste of Inverse Problems
Author: Martin Hanke
Publisher: SIAM
Total Pages: 171
Release: 2017-01-01
Genre: Mathematics
ISBN: 1611974933

Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Author: Roger Ghanem
Publisher: Springer
Total Pages: 0
Release: 2016-05-08
Genre: Mathematics
ISBN: 9783319123844

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry
Author: Guy P. Brasseur
Publisher: Cambridge University Press
Total Pages: 631
Release: 2017-06-19
Genre: Science
ISBN: 1108210953

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.

Applications of Data Assimilation and Inverse Problems in the Earth Sciences

Applications of Data Assimilation and Inverse Problems in the Earth Sciences
Author: Alik Ismail-Zadeh
Publisher: Cambridge University Press
Total Pages: 369
Release: 2023-06-30
Genre: Mathematics
ISBN: 1009180401

A comprehensive reference on data assimilation and inverse problems, and their applications across a broad range of geophysical disciplines, ideal for researchers and graduate students. It highlights the importance of data assimilation for understanding dynamical processes of the Earth and its space environment, and summarises recent advances.

Parameter Estimation and Inverse Problems

Parameter Estimation and Inverse Problems
Author: Richard C. Aster
Publisher: Elsevier
Total Pages: 406
Release: 2018-10-16
Genre: Science
ISBN: 0128134232

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner