Model Theory of Stochastic Processes

Model Theory of Stochastic Processes
Author: Sergio Fajardo
Publisher: Cambridge University Press
Total Pages: 150
Release: 2017-03-30
Genre: Mathematics
ISBN: 1108619266

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourteenth publication in the Lecture Notes in Logic series, Fajardo and Keisler present new research combining probability theory and mathematical logic. It is a general study of stochastic processes using ideas from model theory, a key central theme being the question, 'When are two stochastic processes alike?' The authors assume some background in nonstandard analysis, but prior knowledge of model theory and advanced logic is not necessary. This volume will appeal to mathematicians willing to explore new developments with an open mind.

Model Theory of Stochastic Processes

Model Theory of Stochastic Processes
Author: Sergio Fajardo
Publisher: A K Peters/CRC Press
Total Pages: 140
Release: 2002-01-01
Genre: Mathematics
ISBN: 9781568811727

This book presents new research in probability theory using ideas from mathematical logic. It is a general study of stochastic processes on adapted probability spaces, employing the concept of similarity of stochastic processes based on the notion of adapted distribution. The authors use ideas from model theory and methods from nonstandard analysis. The construction of spaces with certain richness properties, defined by insights from model theory, becomes easy using nonstandard methods, but remains difficult or impossible without them.

Stochastic Modeling

Stochastic Modeling
Author: Nicolas Lanchier
Publisher: Springer
Total Pages: 305
Release: 2017-01-27
Genre: Mathematics
ISBN: 3319500384

Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.

Theory and Applications of Stochastic Processes

Theory and Applications of Stochastic Processes
Author: Zeev Schuss
Publisher: Springer Science & Business Media
Total Pages: 486
Release: 2009-12-09
Genre: Mathematics
ISBN: 1441916059

Stochastic processes and diffusion theory are the mathematical underpinnings of many scientific disciplines, including statistical physics, physical chemistry, molecular biophysics, communications theory and many more. Many books, reviews and research articles have been published on this topic, from the purely mathematical to the most practical. This book offers an analytical approach to stochastic processes that are most common in the physical and life sciences, as well as in optimal control and in the theory of filltering of signals from noisy measurements. Its aim is to make probability theory in function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations and asymptotic methods, rather than in probability and measure theory.

Probability, Stochastic Processes, and Queueing Theory

Probability, Stochastic Processes, and Queueing Theory
Author: Randolph Nelson
Publisher: Springer Science & Business Media
Total Pages: 595
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475724268

We will occasionally footnote a portion of text with a "**,, to indicate Notes on the that this portion can be initially bypassed. The reasons for bypassing a Text portion of the text include: the subject is a special topic that will not be referenced later, the material can be skipped on first reading, or the level of mathematics is higher than the rest of the text. In cases where a topic is self-contained, we opt to collect the material into an appendix that can be read by students at their leisure. The material in the text cannot be fully assimilated until one makes it Notes on "their own" by applying the material to specific problems. Self-discovery Problems is the best teacher and although they are no substitute for an inquiring mind, problems that explore the subject from different viewpoints can often help the student to think about the material in a uniquely per sonal way. With this in mind, we have made problems an integral part of this work and have attempted to make them interesting as well as informative.

Stochastic Models, Information Theory, and Lie Groups, Volume 1

Stochastic Models, Information Theory, and Lie Groups, Volume 1
Author: Gregory S. Chirikjian
Publisher: Springer Science & Business Media
Total Pages: 397
Release: 2009-09-02
Genre: Mathematics
ISBN: 0817648038

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.

The Theory of Stochastic Processes I

The Theory of Stochastic Processes I
Author: Iosif I. Gikhman
Publisher: Springer
Total Pages: 587
Release: 2015-03-30
Genre: Mathematics
ISBN: 3642619436

From the Reviews: "Gihman and Skorohod have done an excellent job of presenting the theory in its present state of rich imperfection." --D.W. Stroock, Bulletin of the American Mathematical Society, 1980

Stochastic Processes

Stochastic Processes
Author: Robert G. Gallager
Publisher: Cambridge University Press
Total Pages: 559
Release: 2013-12-12
Genre: Business & Economics
ISBN: 1107039754

The definitive textbook on stochastic processes, written by one of the world's leading information theorists, covering both theory and applications.

Stochastic Processes

Stochastic Processes
Author: Pierre Del Moral
Publisher: CRC Press
Total Pages: 866
Release: 2017-02-24
Genre: Mathematics
ISBN: 1498701841

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.

Probability Theory and Stochastic Processes

Probability Theory and Stochastic Processes
Author: Pierre Brémaud
Publisher: Springer Nature
Total Pages: 717
Release: 2020-04-07
Genre: Mathematics
ISBN: 3030401839

The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.