Model Theory In Algebra Analysis And Arithmetic
Download Model Theory In Algebra Analysis And Arithmetic full books in PDF, epub, and Kindle. Read online free Model Theory In Algebra Analysis And Arithmetic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lou van den Dries |
Publisher | : Springer |
Total Pages | : 201 |
Release | : 2014-09-20 |
Genre | : Mathematics |
ISBN | : 3642549365 |
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Author | : David Marker |
Publisher | : Springer Science & Business Media |
Total Pages | : 342 |
Release | : 2006-04-06 |
Genre | : Mathematics |
ISBN | : 0387227342 |
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Author | : Alexander Prestel |
Publisher | : Springer Science & Business Media |
Total Pages | : 198 |
Release | : 2011-08-21 |
Genre | : Mathematics |
ISBN | : 1447121767 |
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
Author | : Katrin Tent |
Publisher | : Cambridge University Press |
Total Pages | : 259 |
Release | : 2012-03-08 |
Genre | : Mathematics |
ISBN | : 052176324X |
Concise introduction to current topics in model theory, including simple and stable theories.
Author | : Ali Enayat |
Publisher | : American Mathematical Soc. |
Total Pages | : 184 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 0821835351 |
This is the proceedings of the AMS special session on nonstandard models of arithmetic and set theory held at the Joint Mathematics Meetings in Baltimore (MD). The volume opens with an essay from Haim Gaifman that probes the concept of non-standardness in mathematics and provides a fascinating mix of historical and philosophical insights into the nature of nonstandard mathematical structures. In particular, Gaifman compares and contrasts the discovery of nonstandard models with other key mathematical innovations, such as the introduction of various number systems, the modern concept of function, and non-Euclidean geometries. Other articles in the book present results related to nonstandard models in arithmetic and set theory, including a survey of known results on the Turing upper bounds of arithmetic sets and functions. The volume is suitable for graduate students and research mathematicians interested in logic, especially model theory.
Author | : Anatolij Ivanovic Mal'cev |
Publisher | : Springer Science & Business Media |
Total Pages | : 331 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 364265374X |
As far back as the 1920's, algebra had been accepted as the science studying the properties of sets on which there is defined a particular system of operations. However up until the forties the overwhelming majority of algebraists were investigating merely a few kinds of algebraic structures. These were primarily groups, rings and lattices. The first general theoretical work dealing with arbitrary sets with arbitrary operations is due to G. Birkhoff (1935). During these same years, A. Tarski published an important paper in which he formulated the basic prin ciples of a theory of sets equipped with a system of relations. Such sets are now called models. In contrast to algebra, model theory made abun dant use of the apparatus of mathematical logic. The possibility of making fruitful use of logic not only to study universal algebras but also the more classical parts of algebra such as group theory was dis covered by the author in 1936. During the next twenty-five years, it gradually became clear that the theory of universal algebras and model theory are very intimately related despite a certain difference in the nature of their problems. And it is therefore meaningful to speak of a single theory of algebraic systems dealing with sets on which there is defined a series of operations and relations (algebraic systems). The formal apparatus of the theory is the language of the so-called applied predicate calculus. Thus the theory can be considered to border on logic and algebra.
Author | : |
Publisher | : |
Total Pages | : 0 |
Release | : 1973 |
Genre | : Model theory |
ISBN | : 9780720422009 |
Author | : Elisabeth Bouscaren |
Publisher | : Springer |
Total Pages | : 223 |
Release | : 2009-03-14 |
Genre | : Mathematics |
ISBN | : 3540685219 |
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Author | : |
Publisher | : Elsevier |
Total Pages | : 619 |
Release | : 1998-11-30 |
Genre | : Computers |
ISBN | : 9780080533698 |
Author | : David Marker |
Publisher | : CRC Press |
Total Pages | : 172 |
Release | : 2005-12-15 |
Genre | : Mathematics |
ISBN | : 1439864411 |
The model theory of fields is a fascinating subject stretching from Tarski's work on the decidability of the theories of the real and complex fields to Hrushovksi's recent proof of the Mordell-Lang conjecture for function fields. This volume provides an insightful introduction to this active area, concentrating on connections to stability theory.