Model Reduction and Approximation

Model Reduction and Approximation
Author: Peter Benner
Publisher: SIAM
Total Pages: 421
Release: 2017-07-06
Genre: Science
ISBN: 161197481X

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.

Model Order Reduction: Theory, Research Aspects and Applications

Model Order Reduction: Theory, Research Aspects and Applications
Author: Wilhelmus H. Schilders
Publisher: Springer Science & Business Media
Total Pages: 471
Release: 2008-08-27
Genre: Mathematics
ISBN: 3540788417

The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Approximation of Large-Scale Dynamical Systems

Approximation of Large-Scale Dynamical Systems
Author: Athanasios C. Antoulas
Publisher: SIAM
Total Pages: 489
Release: 2009-06-25
Genre: Mathematics
ISBN: 0898716586

Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.

Model Reduction for Control System Design

Model Reduction for Control System Design
Author: Goro Obinata
Publisher: Springer Science & Business Media
Total Pages: 177
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1447102835

Comprehensive treatment of approximation methods for filters and controllers. It is fully up to date, and it is authored by two leading researchers who have personally contributed to the development of some of the methods. Balanced truncation, Hankel norm reduction, multiplicative reduction, weighted methods and coprime factorization methods are all discussed. The book is amply illustrated with examples, and will equip practising control engineers and graduates for intelligent use of commercial software modules for model and controller reduction.

Interpolatory Methods for Model Reduction

Interpolatory Methods for Model Reduction
Author: A. C. Antoulas
Publisher: SIAM
Total Pages: 245
Release: 2020-01-13
Genre: Mathematics
ISBN: 1611976081

Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.

Reduced-Order Modeling (ROM) for Simulation and Optimization

Reduced-Order Modeling (ROM) for Simulation and Optimization
Author: Winfried Keiper
Publisher: Springer
Total Pages: 184
Release: 2018-04-11
Genre: Mathematics
ISBN: 3319753193

This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.

Geometric Approximation Algorithms

Geometric Approximation Algorithms
Author: Sariel Har-Peled
Publisher: American Mathematical Soc.
Total Pages: 378
Release: 2011
Genre: Computers
ISBN: 0821849115

Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

Neuronal Dynamics

Neuronal Dynamics
Author: Wulfram Gerstner
Publisher: Cambridge University Press
Total Pages: 591
Release: 2014-07-24
Genre: Computers
ISBN: 1107060834

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Reduced Basis Methods for Partial Differential Equations

Reduced Basis Methods for Partial Differential Equations
Author: Alfio Quarteroni
Publisher: Springer
Total Pages: 305
Release: 2015-08-19
Genre: Mathematics
ISBN: 3319154311

This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations
Author: Jan S Hesthaven
Publisher: Springer
Total Pages: 139
Release: 2015-08-20
Genre: Mathematics
ISBN: 3319224700

This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.