Model-Based Machine Learning

Model-Based Machine Learning
Author: John Winn
Publisher: CRC Press
Total Pages: 469
Release: 2023-11-30
Genre: Business & Economics
ISBN: 1498756824

Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system. The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem. Features: Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. Explains machine learning concepts as they arise in real-world case studies. Shows how to diagnose, understand and address problems with machine learning systems. Full source code available, allowing models and results to be reproduced and explored. Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases
Author: Walter Daelemans
Publisher: Springer Science & Business Media
Total Pages: 714
Release: 2008-09-04
Genre: Computers
ISBN: 354087478X

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Encyclopedia of Machine Learning

Encyclopedia of Machine Learning
Author: Claude Sammut
Publisher: Springer Science & Business Media
Total Pages: 1061
Release: 2011-03-28
Genre: Computers
ISBN: 0387307680

This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Reinforcement Learning, second edition

Reinforcement Learning, second edition
Author: Richard S. Sutton
Publisher: MIT Press
Total Pages: 549
Release: 2018-11-13
Genre: Computers
ISBN: 0262352702

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Model-Based Reinforcement Learning

Model-Based Reinforcement Learning
Author: Milad Farsi
Publisher: John Wiley & Sons
Total Pages: 276
Release: 2023-01-05
Genre: Science
ISBN: 111980857X

Model-Based Reinforcement Learning Explore a comprehensive and practical approach to reinforcement learning Reinforcement learning is an essential paradigm of machine learning, wherein an intelligent agent performs actions that ensure optimal behavior from devices. While this paradigm of machine learning has gained tremendous success and popularity in recent years, previous scholarship has focused either on theory—optimal control and dynamic programming – or on algorithms—most of which are simulation-based. Model-Based Reinforcement Learning provides a model-based framework to bridge these two aspects, thereby creating a holistic treatment of the topic of model-based online learning control. In doing so, the authors seek to develop a model-based framework for data-driven control that bridges the topics of systems identification from data, model-based reinforcement learning, and optimal control, as well as the applications of each. This new technique for assessing classical results will allow for a more efficient reinforcement learning system. At its heart, this book is focused on providing an end-to-end framework—from design to application—of a more tractable model-based reinforcement learning technique. Model-Based Reinforcement Learning readers will also find: A useful textbook to use in graduate courses on data-driven and learning-based control that emphasizes modeling and control of dynamical systems from data Detailed comparisons of the impact of different techniques, such as basic linear quadratic controller, learning-based model predictive control, model-free reinforcement learning, and structured online learning Applications and case studies on ground vehicles with nonholonomic dynamics and another on quadrator helicopters An online, Python-based toolbox that accompanies the contents covered in the book, as well as the necessary code and data Model-Based Reinforcement Learning is a useful reference for senior undergraduate students, graduate students, research assistants, professors, process control engineers, and roboticists.

Efficient Reinforcement Learning Using Gaussian Processes

Efficient Reinforcement Learning Using Gaussian Processes
Author: Marc Peter Deisenroth
Publisher: KIT Scientific Publishing
Total Pages: 226
Release: 2010
Genre: Electronic computers. Computer science
ISBN: 3866445695

This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

Bayesian Reinforcement Learning

Bayesian Reinforcement Learning
Author: Mohammad Ghavamzadeh
Publisher:
Total Pages: 146
Release: 2015-11-18
Genre: Computers
ISBN: 9781680830880

Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. This monograph provides the reader with an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are that it provides an elegant approach to action-selection (exploration/exploitation) as a function of the uncertainty in learning, and it provides a machinery to incorporate prior knowledge into the algorithms. Bayesian Reinforcement Learning: A Survey first discusses models and methods for Bayesian inference in the simple single-step Bandit model. It then reviews the extensive recent literature on Bayesian methods for model-based RL, where prior information can be expressed on the parameters of the Markov model. It also presents Bayesian methods for model-free RL, where priors are expressed over the value function or policy class. Bayesian Reinforcement Learning: A Survey is a comprehensive reference for students and researchers with an interest in Bayesian RL algorithms and their theoretical and empirical properties.

Reinforcement Learning Algorithms: Analysis and Applications

Reinforcement Learning Algorithms: Analysis and Applications
Author: Boris Belousov
Publisher: Springer Nature
Total Pages: 197
Release: 2021-01-02
Genre: Technology & Engineering
ISBN: 3030411885

This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications. The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt. The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.

Reinforcement Learning Algorithms with Python

Reinforcement Learning Algorithms with Python
Author: Andrea Lonza
Publisher: Packt Publishing Ltd
Total Pages: 356
Release: 2019-10-18
Genre: Computers
ISBN: 1789139708

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries Key FeaturesLearn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasksUnderstand and develop model-free and model-based algorithms for building self-learning agentsWork with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategiesBook Description Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community. What you will learnDevelop an agent to play CartPole using the OpenAI Gym interfaceDiscover the model-based reinforcement learning paradigmSolve the Frozen Lake problem with dynamic programmingExplore Q-learning and SARSA with a view to playing a taxi gameApply Deep Q-Networks (DQNs) to Atari games using GymStudy policy gradient algorithms, including Actor-Critic and REINFORCEUnderstand and apply PPO and TRPO in continuous locomotion environmentsGet to grips with evolution strategies for solving the lunar lander problemWho this book is for If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You’ll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.