Model Based Clustering And Classification For Data Science
Download Model Based Clustering And Classification For Data Science full books in PDF, epub, and Kindle. Read online free Model Based Clustering And Classification For Data Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Charles Bouveyron |
Publisher | : Cambridge University Press |
Total Pages | : 447 |
Release | : 2019-07-25 |
Genre | : Mathematics |
ISBN | : 1108640591 |
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Author | : Charles Bouveyron |
Publisher | : Cambridge University Press |
Total Pages | : 446 |
Release | : 2019-07-25 |
Genre | : Business & Economics |
ISBN | : 110849420X |
Colorful example-rich introduction to the state-of-the-art for students in data science, as well as researchers and practitioners.
Author | : Elizabeth Ann Maharaj |
Publisher | : CRC Press |
Total Pages | : 213 |
Release | : 2019-03-19 |
Genre | : Mathematics |
ISBN | : 0429603304 |
The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website
Author | : Guojun Gan |
Publisher | : SIAM |
Total Pages | : 430 |
Release | : 2020-11-10 |
Genre | : Mathematics |
ISBN | : 1611976332 |
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Author | : Christine Preisach |
Publisher | : Springer Science & Business Media |
Total Pages | : 714 |
Release | : 2008-04-13 |
Genre | : Computers |
ISBN | : 354078246X |
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Author | : Krzystof Jajuga |
Publisher | : Springer Science & Business Media |
Total Pages | : 468 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 3642561810 |
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.
Author | : Geoffrey McLachlan |
Publisher | : John Wiley & Sons |
Total Pages | : 419 |
Release | : 2004-03-22 |
Genre | : Mathematics |
ISBN | : 047165406X |
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Author | : Charu C. Aggarwal |
Publisher | : CRC Press |
Total Pages | : 648 |
Release | : 2013-08-21 |
Genre | : Business & Economics |
ISBN | : 1466558229 |
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.
Author | : Brad Boehmke |
Publisher | : CRC Press |
Total Pages | : 373 |
Release | : 2019-11-07 |
Genre | : Business & Economics |
ISBN | : 1000730433 |
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Author | : Phipps Arabie |
Publisher | : World Scientific |
Total Pages | : 508 |
Release | : 1996 |
Genre | : Mathematics |
ISBN | : 9789810212872 |
At a moderately advanced level, this book seeks to cover the areas of clustering and related methods of data analysis where major advances are being made. Topics include: hierarchical clustering, variable selection and weighting, additive trees and other network models, relevance of neural network models to clustering, the role of computational complexity in cluster analysis, latent class approaches to cluster analysis, theory and method with applications of a hierarchical classes model in psychology and psychopathology, combinatorial data analysis, clusterwise aggregation of relations, review of the Japanese-language results on clustering, review of the Russian-language results on clustering and multidimensional scaling, practical advances, and significance tests.